2 DISTINCT SIGNALING PATHWAYS TRIGGER THE EXPRESSION OF INDUCIBLE NITRIC-OXIDE SYNTHASE IN RAT RENAL MESANGIAL CELLS

被引:164
作者
KUNZ, D [1 ]
MUHL, H [1 ]
WALKER, G [1 ]
PFEILSCHIFTER, J [1 ]
机构
[1] UNIV BASEL,BIOCTR,DEPT PHARMACOL,CH-4056 BASEL,SWITZERLAND
关键词
D O I
10.1073/pnas.91.12.5387
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The expression of nitric oxide synthase (NOS; EC 1.14.13.39) is induced in rat glomerular mesangial cells by exposure to the inflammatory cytokine interleukin 1 beta (IL-1 beta) or cAMP-elevating agents. Stimulation with IL-1 beta alone leads to an approximately 40-fold increase in NOS activity and nitrite synthesis, whereas the elevation of cAMP with forskolin, cholera toxin, salbutamol, or dibutyryl-cAMP for 24 h resulted in a 2- to 12-fold increase in NOS activity. Moreover, the combinations of IL-1 beta with each of the cAMP-elevating agents greatly enhanced NOS activity in a synergistic fashion. Northern-blot analysis demonstrated a single band of approximate to 4.5 kb for the NOS mRNA in rat mesangial cells. IL-1 beta increased NOS mRNA levels in a dose- and time-dependent fashion with a peak of NOS mRNA at 24 h. Dibutyryl cAMP also increased NOS mRNA levels in mesangial cells in a dose- and time-dependent manner. Furthermore, combination of IL-1 beta and forskolin revealed a strong synergy with maximal mRNA levels 12 h after stimulation. Nuclear run-on transcription experiments suggest that IL-1 beta and cAMP synergistically interact to increase NOS gene expression at the transcriptional level. Furthermore, message stability studies established that NOS mRNA induced by cAMP has a longer half-life than the IL-1 beta-induced message. Moreover, cAMP exposure markedly prolonged the half-life of NOS mRNA from 1 h to 3 h. These data suggest that the level of NOS mRNA is controlled by at least two different signaling pathways, one involving cAMP and the other being triggered by cytokines such as IL-1 beta The two pathways act synergistically and thus potently up-regulate the expression of inducible NOS in rat mesangial cells.
引用
收藏
页码:5387 / 5391
页数:5
相关论文
共 33 条
[1]   CLONED AND EXPRESSED NITRIC-OXIDE SYNTHASE STRUCTURALLY RESEMBLES CYTOCHROME-P-450 REDUCTASE [J].
BREDT, DS ;
HWANG, PM ;
GLATT, CE ;
LOWENSTEIN, C ;
REED, RR ;
SNYDER, SH .
NATURE, 1991, 351 (6329) :714-718
[2]   IDENTIFICATION OF A COMMON NUCLEOTIDE-SEQUENCE IN THE 3'-UNTRANSLATED REGION OF MESSENGER-RNA MOLECULES SPECIFYING INFLAMMATORY MEDIATORS [J].
CAPUT, D ;
BEUTLER, B ;
HARTOG, K ;
THAYER, R ;
BROWNSHIMER, S ;
CERAMI, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (06) :1670-1674
[3]   NITRIC-OXIDE AND ENDOTHELIN SECRETION BY BRAIN MICROVESSEL ENDOTHELIAL-CELLS - REGULATION BY CYCLIC-NUCLEOTIDES [J].
DURIEUTRAUTMANN, O ;
FEDERICI, C ;
CREMINON, C ;
FOIGNANTCHAVEROT, N ;
ROUX, F ;
CLAIRE, M ;
STROSBERG, AD ;
COURAUD, PO .
JOURNAL OF CELLULAR PHYSIOLOGY, 1993, 155 (01) :104-111
[4]  
EBERHARDT W, 1994, IN PRESS BIOCH BIOPH
[5]   INTERLEUKIN-1-BETA INDUCES THE EXPRESSION OF AN ISOFORM OF NITRIC-OXIDE SYNTHASE IN INSULIN-PRODUCING CELLS, WHICH IS SIMILAR TO THAT OBSERVED IN ACTIVATED MACROPHAGES [J].
EIZIRIK, DL ;
CAGLIERO, E ;
BJORKLUND, A ;
WELSH, N .
FEBS LETTERS, 1992, 308 (03) :249-252
[6]   REGULATION BY PROSTAGLANDIN-E2 OF CYTOKINE-ELICITED NITRIC-OXIDE SYNTHESIS IN RAT-LIVER MACROPHAGES [J].
GAILLARD, T ;
MULSCH, A ;
KLEIN, H ;
DECKER, K .
BIOLOGICAL CHEMISTRY HOPPE-SEYLER, 1992, 373 (09) :897-902
[7]   GLUTAMATE, NITRIC-OXIDE AND CELL CELL SIGNALING IN THE NERVOUS-SYSTEM [J].
GARTHWAITE, J .
TRENDS IN NEUROSCIENCES, 1991, 14 (02) :60-67
[8]   CYTOKINES, ENDOTOXIN, AND GLUCOCORTICOIDS REGULATE THE EXPRESSION OF INDUCIBLE NITRIC-OXIDE SYNTHASE IN HEPATOCYTES [J].
GELLER, DA ;
NUSSLER, AK ;
DISILVIO, M ;
LOWENSTEIN, CJ ;
SHAPIRO, RA ;
WANG, SC ;
SIMMONS, RL ;
BILLIAR, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (02) :522-526
[9]   ANALYSIS OF NITRATE, NITRITE, AND [N-15]-LABELED NITRATE IN BIOLOGICAL-FLUIDS [J].
GREEN, LC ;
WAGNER, DA ;
GLOGOWSKI, J ;
SKIPPER, PL ;
WISHNOK, JS ;
TANNENBAUM, SR .
ANALYTICAL BIOCHEMISTRY, 1982, 126 (01) :131-138
[10]  
KROENCKE K-D, 1991, Biochemical and Biophysical Research Communications, V175, P752