SPECTRA OF CAYLEY GRAPHS

被引:156
作者
BABAI, L
机构
[1] Eötvös L. University, Department of Algebra and Number Theory, H-1088 Budapest
关键词
D O I
10.1016/0095-8956(79)90079-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By a result of L. Lovász, the determination of the spectrum of any graph with transitive automorphism group easily reduces to that of some Cayley graph. We derive an expression for the spectrum of the Cayley graph X(G,H) in terms of irreducible characters of the group G: λti,1+...+λti,n= ∑ g1,...,gt∈HXi Π s=1 tgs for any natural number t, where ξi is an irreducible character (over C), of degree ni, and λi,1,..., λi,n are eigenvalues of X(G, H), each one ni times. (σ ni2 = n = | G | is the total'number of eigenvalues.) Using this formula for t = 1,..., ni one can obtain a polynomial of degree ni whose roots are λi,1,...,λi,n. The results are formulated for directed graphs with colored edges. We apply the results to dihedral groups and prove the existence of k nonisomorphic Cayley graphs of Dp with the same spectrum provided p > 64k, prime. © 1979.
引用
收藏
页码:180 / 189
页数:10
相关论文
共 12 条
  • [1] BABAI L, 1977, ACTA MATH ACAD SCI H, V29, P329
  • [2] Biggs N., 1974, ALGEBRAIC GRAPH THEO, DOI 10.1017/CBO9780511608704
  • [3] BIGGS NL, 1971, FINITE GROUPS AUTOMO
  • [4] Curtis C.W., 1962, REPRESENTATION THEOR
  • [5] ISOMORPHISM PROBLEM FOR A SPECIAL CLASS OF GRAPHS
    DJOKOVIC, DZ
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1970, 21 (3-4): : 267 - &
  • [6] Doob M., 1974, Journal of Combinatorial Theory, Series B, V17, P244, DOI 10.1016/0095-8956(74)90031-8
  • [7] ELSPAS B, 1970, J COMBINATORIAL THEO, V9, P297
  • [8] LovuYsz L., 1975, PERIOD MATH HUNG, V6, P191, DOI DOI 10.1007/BF02018821
  • [9] Mowshowitz A., 1972, J COMB THEORY, V12, P177, DOI DOI 10.1016/0095-8956(72)90023-8
  • [10] Schwenk A. J., 1973, NEW DIRECTIONS THEOR, P275