CLASSICAL AND QUANTUM-PROPERTIES OF 2-DIMENSIONAL BLACK-HOLES

被引:158
作者
MANN, RB
SHIEKH, A
TARASOV, L
机构
[1] Department of Physics, University of Waterloo, Waterloo
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0550-3213(90)90265-F
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We investigate the physics of black hole 1 + 1 dimensions. We demonstrate how an event horizon structure can arise in two dimensions given a variety of energy-momentum tensors, cataloguing the resultant particular solutions. We examine the motion of freely falling test particles in the vicinity of such horizons and demonstrate that they generically fall through in a finite amount of proper time and an infinite amount of coordinate time. The thermodynamic and quantum properties of these solutions are also examined, and give rise to a fundamental length scale in the theory whose origin is markedly different from that of the Planck mass in the higher-dimensional case. We show that 't Hooft's prescription for cutting off eigenmodes of particle wave functions in the vicinity of the horizon is source dependent and particle-mass dependent, unlike the four-dimensional case. © 1990.
引用
收藏
页码:134 / 154
页数:21
相关论文
共 25 条
[1]   PROBLEM OF CONFINEMENT - FROM 2 TO 4 DIMENSIONS [J].
AURILIA, A .
PHYSICS LETTERS B, 1979, 81 (02) :203-206
[2]   GENERALIZED SECOND LAW OF THERMODYNAMICS IN BLACK-HOLE PHYSICS [J].
BEKENSTE.JD .
PHYSICAL REVIEW D, 1974, 9 (12) :3292-3300
[3]   BLACK HOLES AND SECOND LAW [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1972, 4 (15) :737-+
[4]   BLACK HOLES AND ENTROPY [J].
BEKENSTEIN, JD .
PHYSICAL REVIEW D, 1973, 7 (08) :2333-2346
[5]   BLACK-HOLES IN 2 SPACETIME DIMENSIONS [J].
BROWN, JD ;
HENNEAUX, M ;
TEITELBOIM, C .
PHYSICAL REVIEW D, 1986, 33 (02) :319-323
[6]   TRACE ANOMALIES AND HAWKING EFFECT [J].
CHRISTENSEN, SM ;
FULLING, SA .
PHYSICAL REVIEW D, 1977, 15 (08) :2088-2104
[7]   GENERAL RELATIVITY IN 2-DIMENSIONAL AND 3-DIMENSIONAL SPACE-TIMES [J].
COLLAS, P .
AMERICAN JOURNAL OF PHYSICS, 1977, 45 (09) :833-837
[8]   GAUGE-THEORY OF TWO-DIMENSIONAL GRAVITY [J].
FUKUYAMA, T ;
KAMIMURA, K .
PHYSICS LETTERS B, 1985, 160 (4-5) :259-262
[9]   QUANTUM-PROPERTIES OF ALGEBRAICALLY EXTENDED BOSONIC SIGMA-MODELS [J].
GEGENBERG, J ;
KELLY, PF ;
KUNSTATTER, G ;
MANN, RB ;
MCARTHUR, R ;
VINCENT, D .
PHYSICAL REVIEW D, 1989, 40 (06) :1919-1924
[10]   REINTERPRETATION OF THE NON-LINEAR SIGMA MODEL WITH TORSION [J].
GEGENBERG, J ;
KELLY, PF ;
MANN, RB ;
MCARTHUR, R ;
VINCENT, D .
MODERN PHYSICS LETTERS A, 1988, 3 (18) :1791-1796