DIFFUSION AND GEOMETRIC EFFECTS IN PASSIVE ADVECTION BY RANDOM ARRAYS OF VORTICES

被引:7
作者
AVELLANEDA, M [1 ]
TORQUATO, S [1 ]
KIM, IC [1 ]
机构
[1] N CAROLINA STATE UNIV,DEPT MECH & AEROSP ENGN,RALEIGH,NC 27695
来源
PHYSICS OF FLUIDS A-FLUID DYNAMICS | 1991年 / 3卷 / 08期
关键词
D O I
10.1063/1.857917
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Lagrangian transport of a passive scalar in a class of incompressible, random stationary velocity fields, termed "random-vortex" models, is studied. These fields generally consist of random distributions of finite-sized elementary vortices in space with zero mean velocity in the presence of molecular diffusion D. The effects of vortex density, vortex strength, and sign of the vorticity on the Lagrangian history of a fluid particle [i.e., mean-square displacement sigma-2(t) and velocity autocorrelation function R(t)] on the specific random-vortex models which possess identical energy spectra but different higher-order statistics for a Peclet number of 100 are investigated. This is done by a combination of Monte Carlo simulations of the Langevin equations and analysis. It is found that the Lagrangian autocorrelation R(t) and the mean-square displacement sigma-2(t) can be significantly different as the density of the vortices increases and when there are long-range correlations in the sign of the vorticity. A simple theory based on a model for R(t) agrees strikingly well with the present simulations. It is found that D* increases with vortex density, suggesting that Gaussian fields are maximally dissipative among a wide class of vortex flows with given energy spectra.
引用
收藏
页码:1880 / 1891
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 2013, THEORY SIMPLE LIQUID
[2]  
[Anonymous], 1920, P LONDON MATH SOC S, DOI [DOI 10.1063/1.1691776, 10.1112/plms/s2-20.1.196, DOI 10.1112/PLMS/S2-20.1.196]
[3]   ANOMALOUS DIFFUSION IN STEADY FLUID-FLOW THROUGH A POROUS-MEDIUM [J].
ARONOVITZ, JA ;
NELSON, DR .
PHYSICAL REVIEW A, 1984, 30 (04) :1948-1954
[4]   STIELTJES INTEGRAL-REPRESENTATION AND EFFECTIVE DIFFUSIVITY BOUNDS FOR TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
PHYSICAL REVIEW LETTERS, 1989, 62 (07) :753-755
[5]   MATHEMATICAL-MODELS WITH EXACT RENORMALIZATION FOR TURBULENT TRANSPORT [J].
AVELLANEDA, M ;
MAJDA, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 131 (02) :381-429
[6]  
AVELLANEDA M, IN PRESS COMMUN MATH
[7]   ANOMALOUS DIFFUSION IN RANDOM-MEDIA OF ANY DIMENSIONALITY [J].
BOUCHAUD, JP ;
COMTET, A ;
GEORGES, A ;
LEDOUSSAL, P .
JOURNAL DE PHYSIQUE, 1987, 48 (09) :1445-1450
[8]   SUPERDIFFUSION IN RANDOM VELOCITY-FIELDS [J].
BOUCHAUD, JP ;
GEORGES, A ;
KOPLIK, J ;
PROVATA, A ;
REDNER, S .
PHYSICAL REVIEW LETTERS, 1990, 64 (21) :2503-2506
[9]  
CHILDRESS S, 1979, PHYS EARTH PLANETARY, V20, P1726
[10]   CONTINUUM PERCOLATION IN 2 DIMENSIONS - MONTE-CARLO TESTS OF SCALING AND UNIVERSALITY FOR NON-INTERACTING DISKS [J].
GAWLINSKI, ET ;
STANLEY, HE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (08) :L291-L299