Perhaps the most important factor affecting predator-prey interactions is their encounter probability. Predators must either locate sites where prey are active or attract prey to them, and prey must be able to recognize potential predators and flee before capture. In this study we manipulate and describe three components of the foraging system of predatory, web-weaving spiders, the presence of viscid droplets, silk brightness (achromatic surface reflectance), and visibility of the orb pattern, to determine their effect on insect attraction, recognition, and web avoidance. We found that webs with viscid droplets were more visible to prey at close range, but at greater distances the sparkling droplets lured insects to the web area and hence increased insect capture probability. Although the size of viscid droplets and silk brightness are closely correlated (Table 2, Fig. 3), the relationships among droplet size, spider size, and the visual environments in which webs are found are more complicated (Fig. 2, Tables 2, 3). In environments with predictable light exposure, droplet size and hence silk visibility correlate with spider size, and spiders that forage at night produce relatively more visible silks then spiders that forage during the day (Table 3, Fig. 4). In habitats in which light levels are not predictable, silk surface reflectance and spider size are not closely correlated, suggesting that the complexity of the light environment, as well as the visual and foraging behaviors of insects found there, has played an important role in the evolution of spider-insect interactions.