HIGHER-ORDER RIGIDITY - WHAT IS THE PROPER DEFINITION

被引:46
作者
CONNELLY, R [1 ]
SERVATIUS, H [1 ]
机构
[1] MIT, DIV APPL MATH, CAMBRIDGE, MA 02139 USA
关键词
D O I
10.1007/BF02574003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that there is a bar-and-joint framework G(p) which has a configuration p in the plane such that the component of p in the space of all planar configurations of G has a cusp at p. At the cusp point, the mechanism G(p) turns out to be third-order rigid in the sense that every third-order flex must have a trivial first-order component. The existence of a third-order rigid framework that is not rigid calls into question the whole notion of higher-order rigidity.
引用
收藏
页码:193 / 200
页数:8
相关论文
共 11 条
[1]   RIGIDITY OF GRAPHS .2. [J].
ASIMOW, L ;
ROTH, B .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1979, 68 (01) :171-190
[3]   RIGIDITY AND ENERGY [J].
CONNELLY, R .
INVENTIONES MATHEMATICAE, 1982, 66 (01) :11-33
[4]  
CONNELLY R, 1990, 2ND ORDER RIGIDITY P
[5]  
Dixon A. C., 1899, MESSENGER, V29, P1
[6]   MOVEMENT PROBLEMS FOR TWO-DIMENSIONAL LINKAGES [J].
HOPCROFT, J ;
JOSEPH, D ;
WHITESIDES, S .
SIAM JOURNAL ON COMPUTING, 1984, 13 (03) :610-629
[7]  
Kempe A.B., 1875, P LOND MATH SOC, VS1-7, P213
[8]  
Kempe A.B., 1877, DRAW STRAIGHT LINE
[9]  
Kuznetsov E.N., 1991, UNDERCONSTRAINED STR
[10]  
Tarnai T., 1989, ACTA TECHNICA ACAD S, V102, P363