Recruitment of GABA(A) inhibition in rat neocortex is limited and not NMDA dependent

被引:46
作者
Ling, DSF [1 ]
Benardo, LS [1 ]
机构
[1] SUNY HLTH SCI CTR, DEPT NEUROL, BROOKLYN, NY 11203 USA
关键词
D O I
10.1152/jn.1995.74.6.2329
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
1. The recruitment of evoked fast inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs) was examined using whole cell voltage-clamp recordings from layer V pyramidal neurons in slices of rat somatosensory cortex. Synaptic currents were evoked with graded electrical stimulation to assess the relative activation of IPSCs and EPSCs. Fast GABA(A) ergic IPSCs were selectively recorded by holding cells at potentials equal to EPSC reversal (similar to 0 mV). EPSCs were likewise isolated by holding cells at IPSC reversal potential (about -75 mV). 2. As stimulus intensities were increased, the magnitude of the postsynaptic currents also increased. Over the range of stimuli applied (2-10 V), EPSCs did not exhibit an upper limit. However, fast gamma-aminobutyric acid-A (GABA(A))-mediated IPSCs reached a maximum at intensities similar to 2 times threshold. 3. The limit on fast inhibition was unresponsive to alterations in N-methyl-D-aspartate (NMDA)-mediated excitation. Exposure to nominally magnesium-free solutions or to the NMDA antagonist 3-[(RS)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid did not affect the fast IPSC maximum. Shifts in the input-output curves for submaximal activation of IPSCs were seen, which were attributed to polysynaptic excitation. 4. Blockade of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate (non-NMDA) receptors with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) completely abolished synaptically driven, fast GABA(A)-mediated inhibition. These findings suggested that neocortical inhibitory cells could be driven exclusively through non-NMDA transmission. 5. By comparison, in hippocampal CA1 pyramidal neurons maximal fast inhibition was sensitive to both NMDA and non-NMDA receptor blockade. 6. The results in neocortex were corroborated by direct intracellular recordings from layer V-VI interneurons. Non-NMDA receptor blockade with CNQX prevented synaptic activation of action potentials in these cells, even during cotreatment with magnesium-free solution. 7. Together, these results suggest that recruitment of GABA(A) ergic IPSCs in neocortex is ultimately driven via glutamatergic afferents arriving at non-NMDA receptors on interneurons. Properties limiting fast inhibition would favor the propagation of enhanced excitatory activity through the neuronal network.
引用
收藏
页码:2329 / 2335
页数:7
相关论文
共 32 条
[1]  
ALGER BE, 1991, ANN NY ACAD SCI, V627, P249
[2]   EFFECTS OF NEW NON-N-METHYL-D-ASPARTATE ANTAGONISTS ON SYNAPTIC TRANSMISSION IN THE INVITRO RAT HIPPOCAMPUS [J].
ANDREASEN, M ;
LAMBERT, JDC ;
JENSEN, MS .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 414 :317-336
[3]  
ASCHER P, 1991, RES PERSPECTIVES NEU
[4]   SEPARATE ACTIVATION OF FAST AND SLOW INHIBITORY POSTSYNAPTIC POTENTIALS IN RAT NEOCORTEX IN-VITRO [J].
BENARDO, LS .
JOURNAL OF PHYSIOLOGY-LONDON, 1994, 476 (02) :203-215
[5]   RECRUITMENT OF INHIBITION BY ENHANCED ACTIVATION OF SYNAPTIC NMDA RESPONSES IN THE RAT CEREBRAL-CORTEX [J].
BENARDO, LS .
BRAIN RESEARCH, 1993, 627 (02) :314-324
[6]   WHOLE CELL RECORDING FROM NEURONS IN SLICES OF REPTILIAN AND MAMMALIAN CEREBRAL-CORTEX [J].
BLANTON, MG ;
LOTURCO, JJ ;
KRIEGSTEIN, AR .
JOURNAL OF NEUROSCIENCE METHODS, 1989, 30 (03) :203-210
[7]   HORIZONTAL SPREAD OF SYNCHRONIZED ACTIVITY IN NEOCORTEX AND ITS CONTROL BY GABA-MEDIATED INHIBITION [J].
CHAGNACAMITAI, Y ;
CONNORS, BW .
JOURNAL OF NEUROPHYSIOLOGY, 1989, 61 (04) :747-758
[8]   EXCITATORY AMINO-ACID RECEPTORS AND SYNAPTIC PLASTICITY [J].
COLLINGRIDGE, GL ;
SINGER, W .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1990, 11 (07) :290-296
[9]   INITIATION OF SYNCHRONIZED NEURONAL BURSTING IN NEOCORTEX [J].
CONNORS, BW .
NATURE, 1984, 310 (5979) :685-687
[10]   FREQUENCY-DEPENDENT DEPRESSION OF INHIBITION IN GUINEA-PIG NEOCORTEX INVITRO BY GABAB RECEPTOR FEEDBACK ON GABA RELEASE [J].
DEISZ, RA ;
PRINCE, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 412 :513-541