NEW BOUNDS ON THE NUMBER OF UNIT SPHERES THAT CAN TOUCH A UNIT SPHERE IN N-DIMENSIONS

被引:94
作者
ODLYZKO, AM
SLOANE, NJA
机构
[1] Bell Laboratories, Murray Hill
关键词
D O I
10.1016/0097-3165(79)90074-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New upper bounds are given for the maximum number, τn, of nonoverlapping unit spheres that can touch a unit sphere in n-dimensional Euclidean space, for n≤24. In particular it is shown that τ8 = 240 and τ24 = 196560. © 1979.
引用
收藏
页码:210 / 214
页数:5
相关论文
共 8 条
  • [1] Abramowitz M., 1972, HDB MATH FUNCTIONS
  • [2] Coxeter H. S. M, 1963, P S PURE MATH, VVII, P53
  • [3] Delsarte P., 1977, GEOMETRIAE DEDICATA, V6, P363, DOI DOI 10.1007/BF03187604
  • [4] SPHERE PACKINGS AND ERROR-CORRECTING CODES
    LEECH, J
    SLOANE, NJA
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (04): : 718 - &
  • [5] LLOYD SP, HAMMING ASS SCHEMES
  • [6] Rankin RA., 1955, P GLASGOW MATH ASS, V2, P139, DOI DOI 10.1017/S2040618500033219
  • [7] SLOANE NJA, 1977, COMBINATORIAL SURVEY, P117
  • [8] [No title captured]