MULTIPLICATIVE IDEAL THEORY AND RINGS OF QUOTIENTS I

被引:1
作者
FINDLAY, GD
机构
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURG SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES | 1968年 / 68卷
关键词
D O I
10.1017/S0080454100008232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By means of a generalized ring of quotients multiplicative ideal theory is studied in an arbitrary (associative) ring. A suitable generalization of the concept of maximal order is given and factorization theorems are obtained for the nonsingular (two sided) ideals, which generalize the theorems of Artin and E. Noether. © 1968, Royal Society of Edinburgh. All rights reserved.
引用
收藏
页码:30 / &
相关论文
共 11 条
[1]  
BIRKHOFF G, 1948, COLLOQUIUM LECT AM M, V25
[2]  
DUBREIL P, 1957, CONVEGNO ITALOFRANCE, P1
[3]  
Findlay G. D., 1958, CANAD MATH B, V1, p[77, 155]
[4]  
FINDLAY GD, 1958, CAN MATH B, V1, P155
[5]  
FINDLAY GD, 1963, 5 P CAN MATH C MONTR, P97
[6]  
Fuchs L., 1963, PARTIALLY ORDERED AL
[7]  
JACOBSON N, 1943, MATHL SURVS, V2
[8]  
KRULL W, 1948, IDEALTHEORIE
[9]   STRUCTURE OF SEMI-PRIME RINGS AND THEIR RINGS OF QUOTIENTS [J].
LAMBEK, J .
CANADIAN JOURNAL OF MATHEMATICS, 1961, 13 (03) :392-&
[10]  
Utumi Y., 1956, OSAKA MATH J, V8, P1