THE METAPLECTIC REPRESENTATION OF SUQ(1,1) AND THE Q-GEGENBAUER POLYNOMIALS

被引:15
作者
FLOREANINI, R
VINET, L
机构
[1] UNIV MONTREAL,PHYS NUCL LAB,MONTREAL H3C 3J7,QUEBEC,CANADA
[2] UNIV MONTREAL,CTR RECH MATH,MONTREAL H3C 3J7,QUEBEC,CANADA
关键词
D O I
10.1063/1.529710
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The metaplectic representation of the quantum algebra su(q)(1,1) is shown to provide a group-theoretic setting for certain basic orthogonal polynomials generalizing the usual Gegenbauer polynomials.
引用
收藏
页码:1358 / 1362
页数:5
相关论文
共 37 条
[1]  
Abe E., 1980, HOPF ALGEBRAS
[2]   CANONICAL EQUATIONS AND SYMMETRY TECHNIQUES FOR Q-SERIES [J].
AGARWAL, AK ;
KALNINS, EG ;
MILLER, W .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (06) :1519-1538
[3]  
ANDREWS GE, 1985, LECT NOTES MATH, V1171, P36
[4]  
[Anonymous], 1989, INFINITE DIMENSIONAL
[5]   RAMANUJAN AND HYPERGEOMETRIC AND BASIC HYPERGEOMETRIC-SERIES (REPRINTED) [J].
ASKEY, R .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (01) :37-86
[6]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[7]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[8]   QUANTUM LIE-SUPERALGEBRAS AND Q-OSCILLATORS [J].
CHAICHIAN, M ;
KULISH, P .
PHYSICS LETTERS B, 1990, 234 (1-2) :72-80
[9]  
Chihara TS., 1978, INTRO ORTHOGONAL POL
[10]   Q-OSCILLATOR REALIZATIONS OF THE METAPLECTIC REPRESENTATION OF QUANTUM OSP(3,2) [J].
DHOKER, E ;
FLOREANINI, R ;
VINET, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (06) :1427-1429