SOME ANALYTICAL RESULTS ABOUT A SIMPLE REACTION-DIFFUSION SYSTEM FOR MORPHOGENESIS

被引:16
作者
ROTHE, F
机构
[1] Lehrstuhl für Biomathematik, Universität Tübingen, Tübingen, D-7400
关键词
Ljapunov functional; Reaction-diffusion system; Stability; Stationary points;
D O I
10.1007/BF00275155
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The reaction-diffusion system considered involves only one nonlinear term and is a gradient system. In a bifurcation analysis for the equilibrium states, the global existence of infinitely many solution branches can be shown by the method of Ljusternik-Schnirelmann. Their stability is studied. Using a Ljapunov functional it can be shown that the solutions of the time-dependent system converge to the equilibrium states. © 1979 Springer-Verlag.
引用
收藏
页码:375 / 384
页数:10
相关论文
共 17 条
[1]  
BABLOYANTZ A, 1975, B MATH BIOL, V37, P633
[2]  
Conway ED., 1977, COMMUN PARTIAL DIFFE, V2, P679
[3]  
CRANDALL MG, 1970, J MATH MECH, V0019, P01083
[4]  
EVANS J, 1970, BIOPHYS J, V10, P1050
[5]  
Fitzhugh R., 1969, BIOL ENG, V9, P1
[6]   DYNAMICAL SYSTEMS AND STABILITY [J].
HALE, JK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 26 (01) :39-&
[7]  
La Salle J. P., 1967, INVARIANCE PRINCIPLE
[8]  
MAGINU K, 1975, Mathematical Biosciences, V27, P17, DOI 10.1016/0025-5564(75)90026-7
[9]  
MEINHARDT H, 1977, J CELL SCI, V23, P117
[10]  
MOTTONI PD, 1977, ANNALI MAT PURA APPL, V115, P295