POWER BOUNDED PROLONGATIONS AND PICARD-LINDELOF ITERATION

被引:3
作者
NEVANLINNA, O
机构
[1] Institute of Mathematics, Helsinki University of Technology, Espoo
关键词
Subject classifications: AMS(MOS); 65L05; CR:; G1.7;
D O I
10.1007/BF01385637
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The possibility of balancing the iteration and discretization errors in iterative solution of large systems of initial value problems is discussed. The main result answers the question affirmatively by stating that in the convergence process, in a model situation, the decay rate of iteration errors is essentially independent of the step size refinement process. © 1990 Springer-Verlag.
引用
收藏
页码:479 / 501
页数:23
相关论文
共 10 条
[1]   ACCURACY AND STABILITY OF MULTISTAGE MULTISTEP FORMULAS [J].
JELTSCH, R ;
NEVANLINNA, O .
NUMERISCHE MATHEMATIK, 1986, 48 (01) :33-83
[2]   STABILITY AND ACCURACY OF TIME DISCRETIZATIONS FOR INITIAL-VALUE PROBLEMS [J].
JELTSCH, R ;
NEVANLINNA, O .
NUMERISCHE MATHEMATIK, 1982, 40 (02) :245-296
[3]   MULTIGRID DYNAMIC ITERATION FOR PARABOLIC EQUATIONS [J].
LUBICH, C ;
OSTERMANN, A .
BIT NUMERICAL MATHEMATICS, 1987, 27 (02) :216-234
[4]   SETS OF CONVERGENCE AND STABILITY REGIONS [J].
MIEKKALA, U ;
NEVANLINNA, O .
BIT, 1987, 27 (04) :554-584
[5]   CONVERGENCE OF DYNAMIC ITERATION METHODS FOR INITIAL-VALUE PROBLEMS [J].
MIEKKALA, U ;
NEVANLINNA, O .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (04) :459-482
[6]  
NEVANLINNA O, 1989, LECT NOTES MATH, V1386, P97
[7]   LINEAR ACCELERATION OF PICARD-LINDELOF ITERATION [J].
NEVANLINNA, O .
NUMERISCHE MATHEMATIK, 1990, 57 (02) :147-156
[8]   REMARKS ON PICARD-LINDELOF ITERATION .1. [J].
NEVANLINNA, O .
BIT, 1989, 29 (02) :328-346
[9]   REMARKS ON PICARD-LINDELOF ITERATION .2. [J].
NEVANLINNA, O .
BIT, 1989, 29 (03) :535-562
[10]  
Wanner G., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P475, DOI 10.1007/BF01932026