STABILITY THEORY FOR PERIODIC PULSE-TRAIN SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION

被引:13
作者
ARNOLD, JM
机构
[1] Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8QQ, Scotland
关键词
D O I
10.1093/imamat/52.2.123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of the stability of periodic and quasiperiodic trains of soliton pulses in the nonlinear Schrodinger equation is examined using linearized perturbation theory. When the quasiperiodic soliton pulse train is subjected to perturbations of position or phase, there are both stable and unstable regions of the parameter space. The stability exponents of these perturbations are determined in the asymptotic case of large separation between the solitons.
引用
收藏
页码:123 / 140
页数:18
相关论文
共 23 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]  
Agrawal G. P., 2012, APPL NONLINEAR FIBRE
[3]   BANDWIDTH LIMITS DUE TO MUTUAL PULSE INTERACTION IN OPTICAL SOLITON COMMUNICATION-SYSTEMS [J].
ANDERSON, D ;
LISAK, M .
OPTICS LETTERS, 1986, 11 (03) :174-176
[4]   SOLITON PULSE-POSITION MODULATION [J].
ARNOLD, JM .
IEE PROCEEDINGS-J OPTOELECTRONICS, 1993, 140 (06) :359-366
[5]  
ARNOLD JM, 1991, OPT SOC AM, V15, P10
[6]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[7]   INSTABILITY OF PERIODIC WAVETRAINS IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 299 (1456) :59-&
[8]   BANDWIDTH LIMITS OF NONLINEAR (SOLITON) OPTICAL COMMUNICATION-SYSTEMS [J].
BLOW, KJ ;
DORAN, NJ .
ELECTRONICS LETTERS, 1983, 19 (11) :429-430
[9]  
Butcher P. N., 1990, ELEMENTS NONLINEAR O, DOI DOI 10.1017/CBO9781139167994
[10]  
FADDEEV VV, 1986, HAMILTONIAN METHODS