SIMULTANEOUS COORDINATE RELAXATION ALGORITHM FOR LARGE, SPARCE MATRIX EIGENVALUE PROBLEMS

被引:31
作者
RAFFENETTI, RC [1 ]
机构
[1] NASA,LANGLEY RES CTR,INST COMP APPL SCI & ENGN,HAMPTON,VA 23665
关键词
D O I
10.1016/0021-9991(79)90152-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new algorithm for simultaneous coordinate relaxation is described. For the determination of several extreme eigenvalues and eigenvectors of large, sparse matrices the simultaneous algorithm affords significant advantages in comparison with a coordinate relaxation algorithm applied to determine individual eigenvalues and eigenvectors in turn. Results of application of the algorithm to test matrices are discussed. © 1979.
引用
收藏
页码:403 / 419
页数:17
相关论文
共 9 条
[1]  
Bauer Friedrich L., 1957, Z ANGEW MATH PHYS, V8, P214, DOI DOI 10.1007/BF01600502
[2]   ITERATIVE CALCULATION OF A FEW OF LOWEST EIGENVALUES AND CORRESPONDING EIGENVECTORS OF LARGE REAL-SYMMETRIC MATRICES [J].
DAVIDSON, ER .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :87-94
[3]  
LIU BYH, 1978, COMMUNICATION
[4]   ALGORITHM FOR DIAGONALIZATION OF LARGE MATRICES [J].
NESBET, RK .
JOURNAL OF CHEMICAL PHYSICS, 1965, 43 (01) :311-&
[5]   SOR-METHODS FOR EIGENVALUE PROBLEM WITH LARGE SPARSE MATRICES [J].
RUHE, A .
MATHEMATICS OF COMPUTATION, 1974, 28 (127) :695-710
[6]   COMPUTATIONAL ASPECTS OF FL BAUERS SIMULTANEOUS ITERATION METHOD [J].
RUTISHAUSER, H .
NUMERISCHE MATHEMATIK, 1969, 13 (01) :4-+
[7]  
Schwarz H. R., 1974, Computer Methods in Applied Mechanics and Engineering, V3, P11, DOI 10.1016/0045-7825(74)90039-5
[8]   ITERATIVE CALCULATION OF SEVERAL OF LOWEST OR HIGHEST EIGENVALUES AND CORRESPONDING EIGENVECTORS OF VERY LARGE SYMMETRIC MATRICES [J].
SHAVITT, I ;
BENDER, CF ;
PIPANO, A ;
HOSTENY, RP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1973, 11 (01) :90-108
[9]  
Shavitt I., 1970, Journal of Computational Physics, V6, P124, DOI 10.1016/0021-9991(70)90010-0