ON THE STRUCTURE OF THE SET OF PERFECT EQUILIBRIA IN BIMATRIX GAMES

被引:8
作者
BORM, PEM
JANSEN, MJM
POTTERS, JAM
TIJS, SH
机构
[1] DEPT ECONOMETR,5000 LE TILBURG,NETHERLANDS
[2] CATHOLIC UNIV NIJMEGEN,NICI,DEPT MATH,6525 ED NIJMEGEN,NETHERLANDS
[3] OPEN UNIV,6401 DL HEERLEN,NETHERLANDS
关键词
BIMATRIX GAME; PERFECT EQUILIBRIUM; UNDOMINATED EQUILIBRIUM; (MAXIMAL) SELTEN SET;
D O I
10.1007/BF01783413
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper attention is focussed on the structure of the set of perfect equilibria. It turns out that the structure of this set resembles the structure of the Nash equilibrium set. Maximal Selten subsets are introduced to take the role of maximal Nash subsets. It is found that the set of perfect equilibria is the finite union of maximal Selten subsets. Furthermore it is shown that the dimension relation for maximal Nash subsets can be extended to faces of such sets. As a result a dimension relation for maximal Selten subsets is derived.
引用
收藏
页码:17 / 20
页数:4
相关论文
共 14 条
[1]  
BOHNENBLUST HF, 1950, ANN MATH STUD, V24, P51
[2]  
GALE D, 1950, ANN MATH STUD, V24, P37
[3]   NASH SUBSETS AND MOBILITY CHAINS IN BIMATRIX GAMES [J].
HEUER, GA ;
MILLHAM, CB .
NAVAL RESEARCH LOGISTICS, 1976, 23 (02) :311-319
[4]   MAXIMAL NASH SUBSETS FOR BIMATRIX GAMES [J].
JANSEN, MJM .
NAVAL RESEARCH LOGISTICS, 1981, 28 (01) :147-152
[5]  
JANSEN MJM, 1993, IN PRESS GAMES EC BE
[6]  
KUHN HW, 1961, P NATL ACAD SCI USA, V47, P1656
[7]   NASH SUBSETS OF BIMATRIX GAMES [J].
MILLHAM, CB .
NAVAL RESEARCH LOGISTICS, 1974, 21 (02) :307-317
[8]   CONSTRUCTING BIMATRIX GAMES WITH SPECIAL PROPERTIES [J].
MILLHAM, CB .
NAVAL RESEARCH LOGISTICS, 1972, 19 (04) :709-714
[9]  
NASH J, 1951, ANN MATH, V54, P286, DOI 10.2307/1969529
[10]  
Selten R., 1975, International Journal of Game Theory, V4, P25, DOI 10.1007/BF01766400