LOGIC CUTS FOR PROCESSING NETWORKS WITH FIXED CHARGES

被引:31
作者
HOOKER, JN
YAN, H
GROSSMANN, IE
RAMAN, R
机构
[1] Engineering Design Research Center, Carnegie Mellon University, Pittsburgh
基金
美国安德鲁·梅隆基金会; 美国国家科学基金会;
关键词
D O I
10.1016/0305-0548(94)90089-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We show how some simple logical constraints can substantially accelerate the solution of mixed integer linear programming (MILP) models for the design of chemical processing networks. These constraints are easily generated in a preprocessing stage and can be applied symbolically. They represent a new class of cuts, ''logic cuts'', that cut off 0-1 solutions without changing the optimal objective function value. We establish their elementary properties and identify all possible logic cuts for the processing network problems. Preliminary computational results are presented, using OSL.
引用
收藏
页码:265 / 279
页数:15
相关论文
共 14 条
[1]   AN MILP FORMULATION FOR HEAT-INTEGRATED DISTILLATION SEQUENCE SYNTHESIS [J].
ANDRECOVICH, MJ ;
WESTERBERG, AW .
AICHE JOURNAL, 1985, 31 (09) :1461-1474
[2]  
BALAS E, 1991, CUTTING PLANE ALGORI
[3]  
Chvatal V., 1973, Discrete Mathematics, V4, P305, DOI 10.1016/0012-365X(73)90167-2
[4]  
GROFLIN H, 1982, ANN DISCRETE MATH, V16, P121
[5]  
HARCHE F, 1991, 199127 CARN MELL U G
[6]  
HOOKER JN, 1993, IN PRESS ANN MATH AI
[7]  
Jeroslow R. G., 1990, WATER AIR SOIL POLL, V1, P167
[8]   REPRESENTABILITY IN MIXED INTEGER PROGRAMMING .1. CHARACTERIZATION RESULTS [J].
JEROSLOW, RG .
DISCRETE APPLIED MATHEMATICS, 1987, 17 (03) :223-243
[9]  
Jeroslow RG, 1989, ANN DISCRETE MATH
[10]  
RAMAN R, 1991, INT S PROCESS SYSTEM