SAMPLING THEOREMS IN POLAR COORDINATES

被引:61
作者
STARK, H
机构
关键词
D O I
10.1364/JOSA.69.001519
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of representing an arbitrary class of real functions f in terms of their sampled values along the radius r and at equal angular increments of the azimuthal angle theta . Two different bandwidth constraints on f(r, theta ) are considered: Fourier and Hankel. The end result is two theorems which enable images to be reconstructed from their samples. The theorems have potential application in image storage, image encoding, and computer-aided tomography.
引用
收藏
页码:1519 / 1525
页数:7
相关论文
共 14 条
[1]  
Abramowitz M, 1965, HANFBOOK MATH FUNCTI, P371
[2]   UNEQUAL BANDWIDTH SPECTRAL ANALYSIS USING DIGITAL FREQUENCY WARPING [J].
BRACCINI, C ;
OPPENHEIM, AV .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1974, AS22 (04) :236-244
[3]  
GAMO H, 1964, MATRIX TREATMENT PAR, V3, P302
[4]  
Gamo H., 1957, J APPL PHYS JAPAN, V26, P102
[5]   SHANNON SAMPLING THEOREM - ITS VARIOUS EXTENSIONS AND APPLICATIONS - TUTORIAL REVIEW [J].
JERRI, AJ .
PROCEEDINGS OF THE IEEE, 1977, 65 (11) :1565-1596
[6]  
LUKE YL, 1962, INTEGRALS BESSEL FUN, P254
[7]  
OLVER FWJ, 1960, ROYAL SOC MATH TABLE, P7
[8]  
PAPOULIS A, 1968, SYSTEMS TRANSFORMS A, P163
[9]  
RABINER LR, 1975, THEORY APPL DIGITAL, P393
[10]   IMAGE-RECONSTRUCTION USING POLAR SAMPLING THEOREMS [J].
STARK, H ;
SARNA, CS .
APPLIED OPTICS, 1979, 18 (13) :2086-2088