A GENERAL-SOLUTION OF THE WEIGHTED ORTHONORMAL PROCRUSTES PROBLEM

被引:17
作者
MOOIJAART, A
COMMANDEUR, JJF
机构
[1] Department of Psychology, Leiden University, Leiden, 2333AK
关键词
WEIGHTED ORTHONORMAL PROCRUSTES; ALGORITHM; IDIOSCAL; INDSCAL;
D O I
10.1007/BF02294614
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general solution for the weighted orthonormal Procrustes problem is offered in terms of the least squares criterion. For the two-dimensional case, this solution always gives the global minimum; for the general case, an algorithm is proposed that must converge, although not necessarily to the global minimum. In general, the algorithm yields a solution for the problem of how to fit one matrix to another under the condition that the dimensions of the latter matrix first are allowed to be transformed orthonormally and then weighted differentially, which is the task encountered in fitting analogues of the IDIOSCAL and INDSCAL models to a set of configurations.
引用
收藏
页码:657 / 663
页数:7
相关论文
共 14 条
[1]  
BORG I, 1981, ANWENDUNGSORIENTIERT
[2]   ON OBLIQUE PROCRUSTES ROTATION [J].
BROWNE, MW .
PSYCHOMETRIKA, 1967, 32 (02) :125-125
[3]   ON BROWNES SOLUTION FOR OBLIQUE PROCRUSTES ROTATION [J].
CRAMER, EM .
PSYCHOMETRIKA, 1974, 39 (02) :159-163
[4]   ON STATIONARY VALUES OF A 2ND-DEGREE POLYNOMIAL ON UNIT SPHERE [J].
FORSYTHE, GE ;
GOLUB, GH .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1965, 13 (04) :1050-&
[5]  
GOWER JC, 1984, HDB APPLICABLE MATH, V5, P727
[6]  
GREEN BF, 1979, ANN M PSYCHOMETRIC S
[7]   DIRECT APPROACH TO INDIVIDUAL-DIFFERENCES SCALING USING INCREASINGLY COMPLEX TRANSFORMATIONS [J].
LINGOES, JC ;
BORG, I .
PSYCHOMETRIKA, 1978, 43 (04) :491-519
[8]   SOLUTION TO WEIGHTED PROCRUSTES PROBLEM IN WHICH TRANSFORMATION IS IN AGREEMENT WITH LOSS FUNCTION [J].
LISSITZ, RW ;
SCHONEMANN, PH ;
LINGOES, JC .
PSYCHOMETRIKA, 1976, 41 (04) :547-550
[9]   DETERMINING A SIMPLE STRUCTURE WHEN LOADINGS FOR CERTAIN TESTS ARE KNOWN [J].
Mosier, Charles I. .
PSYCHOMETRIKA, 1939, 4 (02) :149-162
[10]   MULTIDIMENSIONAL ROTATION AND SCALING OF CONFIGURATIONS TO OPTIMAL AGREEMENT [J].
PEAY, ER .
PSYCHOMETRIKA, 1988, 53 (02) :199-208