HIPPOCAMPAL PROTEIN-KINASE-C ACTIVITY IS REDUCED IN POOR SPATIAL LEARNERS

被引:203
作者
WEHNER, JM [1 ]
SLEIGHT, S [1 ]
UPCHURCH, M [1 ]
机构
[1] UNIV COLORADO,SCH PHARM,BOULDER,CO 80309
关键词
Inbred strains; Morris water task; Protein kinase C; Spatial learning;
D O I
10.1016/0006-8993(90)91485-Y
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Activation of protein kinase C (PKC) via neurotransmitter coupling processes has been associated with long-term potentiation (LTP) or classical conditioning, but whether natural variation in PKC activity affects learning performance remains to be determined. Inbred strains of mice differ in their ability to exhibit spatial reference memory as measured by the Morris water task. C57BL/6Ibg (C57) mice perform the task better than DBA/2Ibg (DBA) mice, which show relatively little spatial preference. Hippocampal PKC activity extracted from the particulate fraction was lower in DBA mice than in C57 mice. To examine the potential relationship of PKC activity with spatial learning performance, 11 C57BL/6J × DBA/2J recombinant inbred strains (BXD RIs) were trained in the place learning version of the Morris water task. Cortical and hippocampal PKC activities were measured. Variation in spatial learning performance and PKC activity from cortex and hippocampus was observed. A positive significant correlation was observed between measures of spatial learning accuracy and hippocampal PKC in these strains. No correlation was observed between spatial learning accuracy and cortical PKC activity. These data suggest that animals with lower hippocampal PKC activity may have problems performing spatial reference memory tasks with the same degree of accuracy as those with higher hippocampal PKC activity. © 1990.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 43 条
[1]   PROTEIN KINASE-C PHOSPHORYLATES A 47-MR PROTEIN (F1) DIRECTLY RELATED TO SYNAPTIC PLASTICITY [J].
AKERS, RF ;
ROUTTENBERG, A .
BRAIN RESEARCH, 1985, 334 (01) :147-151
[2]   TRANSLOCATION OF PROTEIN-KINASE-C ACTIVITY MAY MEDIATE HIPPOCAMPAL LONG-TERM POTENTIATION [J].
AKERS, RF ;
LOVINGER, DM ;
COLLEY, PA ;
LINDEN, DJ ;
ROUTTENBERG, A .
SCIENCE, 1986, 231 (4738) :587-589
[3]   A SPATIAL-TEMPORAL MODEL OF CELL ACTIVATION [J].
ALKON, DL ;
RASMUSSEN, H .
SCIENCE, 1988, 239 (4843) :998-1005
[4]  
Bailey D. W., 1981, Genetic research strategies for psychobiology and psychiatry., P189
[5]   CLASSICAL-CONDITIONING INDUCES LONG-TERM TRANSLOCATION OF PROTEIN KINASE-C IN RABBIT HIPPOCAMPAL CA1 CELLS [J].
BANK, B ;
DEWEER, A ;
KUZIRIAN, AM ;
RASMUSSEN, H ;
ALKON, DL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (06) :1988-1992
[7]   THE CHOLINERGIC HYPOTHESIS - A HISTORICAL OVERVIEW, CURRENT PERSPECTIVE, AND FUTURE-DIRECTIONS [J].
BARTUS, RT ;
DEAN, RL ;
PONTECORVO, MJ ;
FLICKER, C .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1985, 444 (MAY) :332-358
[8]   SHORT-TERM-MEMORY IN RHESUS-MONKEY - DISRUPTION FROM ANTI-CHOLINERGIC SCOPOLAMINE [J].
BARTUS, RT ;
JOHNSON, HR .
PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 1976, 5 (01) :39-46
[9]   DISTINCT PATTERNS OF EXPRESSION OF DIFFERENT PROTEIN-KINASE-C MESSENGER-RNAS IN RAT-TISSUES [J].
BRANDT, SJ ;
NIEDEL, JE ;
BELL, RM ;
YOUNG, WS .
CELL, 1987, 49 (01) :57-63
[10]   RECOVERY OF SPATIAL-LEARNING DEFICITS AFTER DECAY OF ELECTRICALLY INDUCED SYNAPTIC ENHANCEMENT IN THE HIPPOCAMPUS [J].
CASTRO, CA ;
SILBERT, LH ;
MCNAUGHTON, BL ;
BARNES, CA .
NATURE, 1989, 342 (6249) :545-548