SIMULTANEOUSLY GOOD BASES OF A LATTICE AND ITS RECIPROCAL LATTICE

被引:3
作者
HASTAD, J [1 ]
LAGARIAS, JC [1 ]
机构
[1] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
D O I
10.1007/BF01446883
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:163 / 174
页数:12
相关论文
共 14 条
[1]   ON LOVASZ LATTICE REDUCTION AND THE NEAREST LATTICE POINT PROBLEM [J].
BABAI, L .
COMBINATORICA, 1986, 6 (01) :1-13
[2]  
Cassels J. W. S., 1971, INTRO GEOMETRY NUMBE
[3]  
Cassels J.W.S., 1978, RATIONAL QUADRATIC F
[4]   POLYNOMIAL-TIME ALGORITHMS FOR FINDING INTEGER RELATIONS AMONG REAL NUMBERS [J].
HASTAD, J ;
JUST, B ;
LAGARIAS, JC ;
SCHNORR, CP .
SIAM JOURNAL ON COMPUTING, 1989, 18 (05) :859-881
[5]   DUAL VECTORS AND LOWER BOUNDS FOR THE NEAREST LATTICE POINT PROBLEM [J].
HASTAD, J .
COMBINATORICA, 1988, 8 (01) :75-81
[6]  
HASTAD J, 1986, LECT NOTES COMPUT SC, V210, P118
[7]   MINKOWSKI CONVEX BODY THEOREM AND INTEGER PROGRAMMING [J].
KANNAN, R .
MATHEMATICS OF OPERATIONS RESEARCH, 1987, 12 (03) :415-440
[8]  
LAGARIAS JC, IN PRESS COMBINATORI
[9]  
Lekkerkerker C.G., 1969, GEOMETRY NUMBERS
[10]  
LENSTRA AK, 1982, MATH ANNELAN, V261, P513