FINITE-DIMENSIONAL MODELS OF THE GINZBURG-LANDAU EQUATION

被引:23
作者
DOELMAN, A
机构
[1] Math. Inst., Rijksuniv. Utrecht
关键词
D O I
10.1088/0951-7715/4/2/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study truncated finite dimensional models of the infinite-dimensional equation describing the evolution of even, space-periodic solutions of the Ginzburg-Landau equation. We derive estimates on the position of the global attractor of the flow, which yield that the magnitude of the Mth mode of the global attractor decays faster than any algebraic power of M-1. The estimates are independent of the dimension of the model. In a numerical section we simulate the flow for three radical low-dimensional models (of two, three and four complex modes); we analyse the influence of the number of modes on the global dynamics. The four-dimensional model exhibits the same intricate flow-characteristics as the 32-dimensional model studied by Keefe.
引用
收藏
页码:231 / 250
页数:20
相关论文
共 18 条
[1]   ON THE POSSIBILITY OF SOFT AND HARD TURBULENCE IN THE COMPLEX GINZBURG-LANDAU EQUATION [J].
BARTUCCELLI, M ;
CONSTANTIN, P ;
DOERING, CR ;
GIBBON, JD ;
GISSELFALT, M .
PHYSICA D, 1990, 44 (03) :421-444
[2]   NON-LINEAR WAVE-NUMBER INTERACTION IN NEAR-CRITICAL 2-DIMENSIONAL FLOWS [J].
DIPRIMA, RC ;
ECKHAUS, W ;
SEGEL, LA .
JOURNAL OF FLUID MECHANICS, 1971, 49 (OCT29) :705-&
[3]  
DOELMAN A, 1990, THESIS RIJKSUNIVERSI
[4]   Low-dimensional behaviour in the complex Ginzburg-Landau equation [J].
Doering, Charles R. ;
Gibbon, John D. ;
Holm, Darryl D. ;
Nicolaenko, Basil .
NONLINEARITY, 1988, 1 (02) :279-309
[5]   DIMENSION OF THE ATTRACTORS ASSOCIATED TO THE GINZBURG-LANDAU PARTIAL-DIFFERENTIAL EQUATION [J].
GHIDAGLIA, JM ;
HERON, B .
PHYSICA D, 1987, 28 (03) :282-304
[6]  
IOOS G, 1986, LARGE SCALE MODULATI
[7]   APPROXIMATE INERTIAL MANIFOLDS FOR THE KURAMOTO-SIVASHINSKY EQUATION - ANALYSIS AND COMPUTATIONS [J].
JOLLY, MS ;
KEVREKIDIS, IG ;
TITI, ES .
PHYSICA D, 1990, 44 (1-2) :38-60
[8]  
KEEFE LR, 1985, STUD APPL MATH, V73, P91
[9]   ANOMALOUS PERIOD-DOUBLING BIFURCATIONS LEADING TO CHEMICAL TURBULENCE [J].
KURAMOTO, Y ;
KOGA, S .
PHYSICS LETTERS A, 1982, 92 (01) :1-4
[10]   TRANSITIONS TO CHAOS IN THE GINZBURG-LANDAU EQUATION [J].
MOON, HT ;
HUERRE, P ;
REDEKOPP, LG .
PHYSICA D, 1983, 7 (1-3) :135-150