Interleukin-2 (IL-2)-activated killer cells, also referred to as lymphokine-activated killer (LAK) cells, are stimulated by tumor cells to express cytotoxic activity and to also secrete cytokines such as interferon gamma (IFN gamma) and tumor necrosis factor a (TNF alpha). We previously reported that secretion of cytokines by IL-2-activated T cells (LAK-T cells) is dependent on the initial cross-linking of the T cell receptor (TCR)-CD3-molecular complex, but the crosslinking of accessory molecules, such as LFA-1, CD2, CD44 and CD45, on LAK-T cells can enhance this cytokine production. We have developed an approach involving interspecific gene transfer to define further the contributions of LFA-1 and CD2 to the activation of LAK-T cells. The genes for huICAM-1 (a ligand for LFA-1) and huLFA-3 (a ligand for CD2) were transfected singly and in combination into a null mouse melanoma background, and clonal populations of cells that stably express ICAM-1 and/ or LFA-3 were derived. Expression of the introduced ICAM-1 and/or LFA-3 by transfected cells enhanced their ability to bind LAK-T cells; the LFA-1/ICAM-1-mediated binding was not further enhanced by activation with phorbol 12-myristate 13-acetate. ICAM-1- and/or LFA-3-transfected cells, in the presence of immobilized anti-CD3, exhibited a greater ability to stimulate IFN gamma secretion by LAK-T cells compared to the untransfected parental lines. This experimental system, which allows ICAM-1/LFA-1 and CD2/LFA-3 interactions to occur on the LAK-T cell at a site distal from the anti-CD3 signal, extends our under standing of LAK-T cell activation by establishing that both LFA-1/ICAM-1 and CD2/LFA-3 can mediate co-stimulation via adhesion and signaling events.