A LOWER ESTIMATE FOR CENTRAL PROBABILITIES ON POLYCYCLIC GROUPS

被引:33
作者
ALEXOPOULOS, G [1 ]
机构
[1] UNIV PARIS 11,F-91405 ORSAY,FRANCE
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 1992年 / 44卷 / 05期
关键词
POLYCYCLIC GROUPS; VOLUME GROWTH; CONVOLUTION POWER; HEAT KERNEL;
D O I
10.4153/CJM-1992-055-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a lower estimate for the central value mu*n(e) of the nth convolution power mu*...*mu of a symmetric probability measure mu on a polycyclic group G of exponential growth whose support is finite and generates G. We also give a similar large time diagonal estimate for the fundamendal solution of the equation (partial derivative/partial derivative t + L)u = 0, where L is a left invariant sub-Laplacian on a unimodular amenable Lie group G of exponential growth.
引用
收藏
页码:897 / 910
页数:14
相关论文
共 21 条
[1]  
ALEXOPOULOS G, 1987, B SCI MATH, V3, P189
[2]  
DERRIENIC Y, LECTURE NOTES MATH, V1210
[3]  
DERRIENIC Y, ASTERIQUE, V74, P183
[4]  
GRIGORCHUK RI, 1985, MATH IZVESTIYA USSR, V25
[5]  
GROMOV M, 1981, PUBLICATIONS MATH IH, V53
[6]  
Guivarch Y., 1980, ASTERISQUE, V74
[7]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[8]  
MILNOR J, 1968, J DIFFER GEOM, V72, P447
[9]  
RAGHUNATHAN MS, DISCRETE SUBGROUPS L
[10]  
RAUGI A, 1977, B SOC MATH FRANCE ME, V54, P5