The oligomeric form (14-mer) of the chaperonin protein, Cpn60 (GroEL) from Eschericia coli, displays restricted hydrophobic surfaces and binds tightly one to two molecules of the fluorescent hydrophobic reporter, 1,1'-bi(4-anilino)naphthalene- 5,5'-disulfonic acid (bisANS). The 14-mer is resistant to proteolysis by chymotrypsin, and none of the three sulfhydryl groups/monomer react with 6-iodoacetamidofluorescein. When monomers of Cpn60 that are folded and competent to participate in protein folding are formed by low concentrations of urea (< 2.5 M), the hydrophobic exposure increases to accommodate approximately 14 molecules of bisANS/14-mer, the binding affinity for bisANS decreases, and 1 sulfhydryl group/monomer reacts with 6-iodoacetamidofluorescein. These monomers display limited proteolysis by chymotrypsin at several points within a hydrophobic sequence centered around residue 250 to produce a relatively stable N-terminal fragment (congruent to 26 kDa) and a partially overlapping C-terminal fragment (congruent to 44 kDa). The exposure of hydrophobic surfaces is facilitated by ATPMg. Ions increase hydrophobic exposure more effectively than urea without dissociation of Cpn(60). For example, subdenaturing concentrations of guanidinium chloride (less than or equal to 0.75 M) or the stabilizing salt, guanidinium sulfate, as well as NaCl or KCl are effective. The trivalent cation, spermidine, induces maximum exposure at 5 mM. The results suggest that hydrophobic surfaces can be involved in stabilizing the oligomer and/or in binding proteins to be folded, and they are consistent with suggestions that amphiphilic structures, presenting hydrophobic surfaces within a charged context, would be particularly effective in binding to Cpn60.