IMBEDDED LATTICE RULES FOR MULTIDIMENSIONAL INTEGRATION

被引:18
作者
JOE, S
SLOAN, IH
机构
关键词
IMBEDDED LATTICE RULES; MULTIPLE INTEGRATION;
D O I
10.1137/0729068
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with imbedded sequences of lattice rules. The theoretical properties of certain finite imbedded sequences are developed and an efficient search method for finding "good" imbedded sequences of this kind is discussed. An algorithm for computing these sequences is presented, and some numerical results using the search method and this algorithm are given.
引用
收藏
页码:1119 / 1135
页数:17
相关论文
共 22 条
[1]   RANDOMIZATION OF NUMBER THEORETIC METHODS FOR MULTIPLE INTEGRATION [J].
CRANLEY, R ;
PATTERSON, TNL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1976, 13 (06) :904-914
[2]  
DAVIS PJ, 1984, METHODS NUMERICAL IN
[3]   LATTICE INTEGRATION RULES OF MAXIMAL RANK FORMED BY COPYING RANK-1 RULES [J].
DISNEY, S ;
SLOAN, IH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (02) :566-577
[4]  
Genz A., 1987, MERICAL INTEGRATION, P337
[5]   NUMERICAL EVALUATION OF MULTIPLE INTEGRALS [J].
HABER, S .
SIAM REVIEW, 1970, 12 (04) :481-&
[6]  
Hlawka E., 1962, MONATSH MATH, V66, P140
[7]  
HUA LK, 1981, APPLICATIONS NUMBER
[8]   RANDOMIZATION OF LATTICE RULES FOR NUMERICAL MULTIPLE INTEGRATION [J].
JOE, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 31 (02) :299-304
[9]  
Korobov N. M., 1963, NUMBER THEORETIC MET
[10]  
KOROBOV NM, 1959, DOKL AKAD NAUK SSSR+, V124, P1207