THE NONCLASSICAL METHOD IS MORE GENERAL THAN THE DIRECT METHOD FOR SYMMETRY REDUCTIONS - AN EXAMPLE OF THE FITZHUGH-NAGUMO EQUATION

被引:189
作者
NUCCI, MC [1 ]
CLARKSON, PA [1 ]
机构
[1] UNIV EXETER,DEPT MATH,EXETER EX4 4QE,ENGLAND
关键词
D O I
10.1016/0375-9601(92)90904-Z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper it is shown that there exist exact solutions of the Fitzhugh-Nagumo equation which can be obtained using the nonclassical method for determining symmetry reductions of partial differential equations developed by Bluman and Cole [J. Math. Mech. 18 (1969) 1025], but which are not obtained using the direct method as developed by Clarkson and Kruskal [J. Math. Phys. 30 (1989) 2201].
引用
收藏
页码:49 / 56
页数:8
相关论文
共 48 条
[1]  
Abramowitz M., 1965, HDB MATH FUNCTIONS
[2]  
AMES WF, 1972, NONLINEAR PARTIAL DI, V2
[3]  
Ames William F., 1968, NONLINEAR ORDINARY D
[4]  
Aronson D., 1975, PARTIAL DIFFERENTIAL, P5, DOI DOI 10.1007/BFB0070595
[5]  
Bluman G, 1986, SYMMETRIES DIFFERENT
[6]  
Bluman G.W., 1974, SIMILARITY METHODS D
[7]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[8]   PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1989, 39 (01) :77-94
[9]   SIMILARITY REDUCTIONS FROM EXTENDED PAINLEVE EXPANSIONS FOR NONINTEGRABLE EVOLUTION-EQUATIONS [J].
CARIELLO, F ;
TABOR, M .
PHYSICA D, 1991, 53 (01) :59-70
[10]   THE COMPUTER CALCULATION OF LIE POINT SYMMETRIES OF LARGE SYSTEMS OF DIFFERENTIAL-EQUATIONS [J].
CHAMPAGNE, B ;
HEREMAN, W ;
WINTERNITZ, P .
COMPUTER PHYSICS COMMUNICATIONS, 1991, 66 (2-3) :319-340