AN OPTIMAL VOLUME ELLIPSOID ALGORITHM FOR PARAMETER SET ESTIMATION

被引:32
作者
CHEUNG, MF
YURKOVICH, S
PASSINO, KM
机构
[1] Department of Electrical Engineering, The Ohio State University, Columbus, OH 43210
关键词
12;
D O I
10.1109/9.233172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, a recursive ellipsoid algorithm is derived for parameter set estimation of a SISO linear time-invariant system with bounded noise. The algorithm objective is in seeking the minimal volume ellipsoid bounding the feasible parameter set. Cast in a recursive framework, where a minimal volume ellipsoid results at each recursion, the algorithm extends a result due to Khachian in 1979 in which a technique was developed to solve a class of linear programming problems. This extension and application to the parameter set estimation problem has intuitive geometric appeal and is easy to implement. Comparisons are made to the Optimal Bounding Ellipsoid (OBE) algorithm of Fogel and Huang, and the results are demonstrated via computer simulations.
引用
收藏
页码:1292 / 1296
页数:5
相关论文
共 13 条
  • [1] Aspvall B., 1980, J ALGORITHMS, V1, P1
  • [2] THE ELLIPSOID METHOD - A SURVEY
    BLAND, RG
    GOLDFARB, D
    TODD, MJ
    [J]. OPERATIONS RESEARCH, 1981, 29 (06) : 1039 - 1091
  • [3] Cheung M.-F., 1992, Proceedings of the 1992 American Control Conference (IEEE Cat. No.92CH3072-6), P1172
  • [4] Cheung M.F., 1991, THESIS OHIO STATE U
  • [5] CHEUNG MF, IN PRESS INT J CONTR
  • [6] ON THE VALUE OF INFORMATION IN SYSTEM-IDENTIFICATION - BOUNDED NOISE CASE
    FOGEL, E
    HUANG, YF
    [J]. AUTOMATICA, 1982, 18 (02) : 229 - 238
  • [7] GASSMAN JM, 1992, IEEE P INT C CONTR A
  • [8] Goldfarb D, 1980, MATH PROGRAM, V23, P1
  • [9] CIRCUMSCRIBING AN ELLIPSOID ABOUT INTERSECTION OF 2 ELLIPSOIDS
    KAHAN, W
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (03): : 437 - &
  • [10] KONIG H, 1981, NUMER MATH, V36, P211, DOI 10.1007/BF01396759