CSD2, CSD3, AND CSD4, GENES REQUIRED FOR CHITIN SYNTHESIS IN SACCHAROMYCES-CEREVISIAE - THE CSD2 GENE-PRODUCT IS RELATED TO CHITIN SYNTHASES AND TO DEVELOPMENTALLY REGULATED PROTEINS IN RHIZOBIUM SPECIES AND XENOPUS-LAEVIS

被引:164
作者
BULAWA, CE
机构
[1] Center for Cancer Research, Massachusetts Technology Institute, Cambridge
关键词
D O I
10.1128/MCB.12.4.1764
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Saccharomyces cerevisiae, chitin forms the primary division septum and the bud scar in the walls of vegetative cells. Three chitin synthetic activities have been detected. Two of them, chitin synthase I and chitin synthase II, are not required for synthesis of most of the chitin present in vivo. Using a novel screen, I have identified three mutations, designated csd2, csd3, and csd4, that reduce levels of chitin in vivo by as much as 10-fold without causing any obvious perturbation of cell division. The csd2 and csd4 mutants lack chitin synthase III activity in vitro, while csd3 mutants have wild-type levels of this enzyme. In certain genetic backgrounds, these mutations cause temperature-sensitive growth on rich medium; inclusion of salts or sorbitol bypasses this phenotype. Gene disruption experiments show that CSD2 is nonessential; a small amount of chitin, about 5% of the wild-type level, is detected in the disruptants. DNA sequencing indicates that the CSD2 protein has limited, but statistically significant, similarity to chitin synthase I and chitin synthase II. Other significant similarities are to two developmental proteins: the nodC protein from Rhizobium species and the DG42 protein of Xenopus laevis. The relationship between the nodC and CSD2 proteins suggests that nodC may encode an N-acetylglucosaminyltransferase that synthesizes the oligosaccharide backbone of the nodulation factor NodRm-1.
引用
收藏
页码:1764 / 1776
页数:13
相关论文
共 55 条