STATISTICAL DYNAMICS OF THE LORENZ MODEL

被引:19
作者
KNOBLOCH, E [1 ]
机构
[1] HARVARD COLL OBSERV, SMITHSONIAN ASTROPHYS OBSERV, CAMBRIDGE, MA 02138 USA
关键词
fluctuation spectra; random behavior of nonlinear differential equations; Rayleigh-Bénard layer; stochastic differential equations; Turbulence;
D O I
10.1007/BF01009519
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the theory of stochastic differential equations with rapidly fluctuating coefficients to study the statistical dynamics of the Lorenz model in the turbulent region. On the assumption that the system is ergodic we are able to calculate self-consistently several basic statistical quantities in terms of the parameters of the model. Our results are in good agreement with numerical computations. © 1979 Plenum Publishing Corporation.
引用
收藏
页码:695 / 709
页数:15
相关论文
共 14 条
[1]  
[Anonymous], 1972, MEM ROY SCI LIEGE
[2]   ENERGETIC STABILITY OF HARMONIC OSCILLATOR WITH RANDOM PARAMETRIC DRIVING [J].
BOURRET, R .
PHYSICA, 1971, 54 (04) :623-&
[3]   STOCHASTICALLY PERTURBED FIELDS, WITH APPLICATIONS TO WAVE PROPAGATION IN RANDOM MEDIA [J].
BOURRET, RC .
NUOVO CIMENTO, 1962, 26 (01) :1-+
[4]  
KNOBLOCH E, 1978 SUMM STUD PROGR, P91
[5]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[6]  
2
[7]   STATISTICAL DYNAMICS OF LORENTZ MODEL [J].
LUCKE, M .
JOURNAL OF STATISTICAL PHYSICS, 1976, 15 (06) :455-475
[8]   TRANSITION TO TURBULENCE IN A STATICALLY STRESSED FLUID SYSTEM [J].
MCLAUGHLIN, JB ;
MARTIN, PC .
PHYSICAL REVIEW A, 1975, 12 (01) :186-203
[9]   NEW APPROACH TO SUBCRITICAL INSTABILITY AND TURBULENT TRANSITIONS IN A SIMPLE DYNAMO [J].
ROBBINS, KA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1977, 82 (SEP) :309-325
[10]   EQUATION FOR CONTINUOUS CHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1976, 57 (05) :397-398