Limited quantum decay

被引:41
作者
Gaveau, B [1 ]
Schulman, LS [1 ]
机构
[1] CLARKSON UNIV,DEPT PHYS,POTSDAM,NY 13699
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 24期
关键词
D O I
10.1088/0305-4470/28/24/029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An isolated level coupled to a continuum of levels need not decay fully into them. Ordinarily one expects exponential decay, module finite-size effects, transients and long-time power-law tails. In the phenomenon we describe the amplitude for remaining in the initial state at first drops, but then levels off and remains O(1) indefinitely. Because of the available continuum, this is different from certain quantum localization phenomena where there is an absence of on-shell levels. The origin of the effect we describe is the existence of thresholds and band edges. A condition relating the proximity to threshold with the strength of the coupling determines whether the limited decay occurs.
引用
收藏
页码:7359 / 7374
页数:16
相关论文
共 12 条
[1]  
[Anonymous], 1996, TABLES INTEGRALS SER
[2]   MANIFESTATIONS OF CLASSICAL PHASE-SPACE STRUCTURES IN QUANTUM-MECHANICS [J].
BOHIGAS, O ;
TOMSOVIC, S ;
ULLMO, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1993, 223 (02) :43-133
[3]  
Doniach S., 1974, GREENS FUNCTIONS SOL
[4]   DECAY THEORY OF UNSTABLE QUANTUM SYSTEMS [J].
FONDA, L ;
GHIRARDI, GC ;
RIMINI, A .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (04) :587-631
[5]   QUANTUM ZENO EFFECT [J].
ITANO, WM ;
HEINZEN, DJ ;
BOLLINGER, JJ ;
WINELAND, DJ .
PHYSICAL REVIEW A, 1990, 41 (05) :2295-2300
[6]  
KHALFIN A, 1986, JETP LETT, V8, P65
[7]   EXPONENTIAL DECAY, RECURRENCES, AND QUANTUM-MECHANICAL SPREADING IN A QUASICONTINUUM MODEL [J].
MILONNI, PW ;
ACKERHALT, JR ;
GALBRAITH, HW ;
SHIH, ML .
PHYSICAL REVIEW A, 1983, 28 (01) :32-39
[8]  
Negele JW., 1988, QUANTUM MANY PARTICL
[9]  
Newton R. G., 2013, SCATTERING THEORY WA
[10]   THE EXPONENTIAL DECAY LAW OF UNSTABLE SYSTEMS [J].
NEWTON, RG .
ANNALS OF PHYSICS, 1961, 14 (01) :333-345