WILD-TYPE AND MUTANT D-XYLOSE ISOMERASE FROM ACTINOPLANES-MISSOURIENSIS - METAL-ION DISSOCIATION-CONSTANTS, KINETIC-PARAMETERS OF DEUTERATED AND NON-DEUTERATED SUBSTRATES AND SOLVENT-ISOTOPE EFFECTS

被引:25
作者
VANBASTELAERE, PBM
KERSTERSHILDERSON, HLM
LAMBEIR, AM
机构
[1] STATE UNIV GHENT,BIOCHEM LAB,B-9000 GHENT,BELGIUM
[2] STATE UNIV GHENT,DEPT MOLEC GENET,B-9000 GHENT,BELGIUM
[3] UNIV INSTELLING ANTWERP,DEPT PHARMACEUT SCI,MED BIOCHEM LAB,B-2610 WILRIJK,BELGIUM
关键词
D O I
10.1042/bj3070135
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The metal-ion dissociation constants (Mg2+, Mn2+) of wild-type and mutant D-xylose isomerases from Actinoplanes missouriensis have been determined by titrating the metal-ion-free enzymes with Mg2+ and Mn2+ respectively. Substitution of amino acids co-ordinated to metal-ion 1 (E181D, D245N) dramatically affects the dissociation constants, pH-activity profiles and apparent substrate binding. Mutagenesis of groups ligated to metal-ion 2 is less drastic except for that of Asp-255: a decrease in metal-ion affinity, a change in metal-ion preference and an improved apparent substrate binding (at pH values above the optimum), especially in the presence of Mn2+, are observed for the D255N enzyme. Similar effects, except for a slightly increased metal-ion affinity, are obtained by mutagenesis of the adjacent Glu-186 to Gin and the unconserved Ala-25 to Lys. Moreover, the striking acidic-pH shifts observed for the D255N and E186Q enzymes support the crucial role of the water molecule, Wa-690, Asp-255 and the adjacent Glu-186 in proton transfer from 2-OH to O-1 of the open and extended aldose substrate. Mutations of other important groups scarcely affect the metal-ion dissociation constants and pH-activity profiles, although pronounced effects on the kinetic parameters may be observed.
引用
收藏
页码:135 / 142
页数:8
相关论文
共 26 条
[1]   ISOTOPIC EXCHANGE PLUS SUBSTRATE AND INHIBITION-KINETICS OF D-XYLOSE ISOMERASE DO NOT SUPPORT A PROTON-TRANSFER MECHANISM [J].
ALLEN, KN ;
LAVIE, A ;
FARBER, GK ;
GLASFELD, A ;
PETSKO, GA ;
RINGE, D .
BIOCHEMISTRY, 1994, 33 (06) :1481-1487
[2]   ROLE OF THE DIVALENT METAL-ION IN SUGAR BINDING, RING-OPENING, AND ISOMERIZATION BY D-XYLOSE ISOMERASE - REPLACEMENT OF A CATALYTIC METAL BY AN AMINO-ACID [J].
ALLEN, KN ;
LAVIE, A ;
GLASFELD, A ;
TANADA, TN ;
GERRITY, DP ;
CARLSON, SC ;
FARBER, GK ;
PETSKO, GA ;
RINGE, D .
BIOCHEMISTRY, 1994, 33 (06) :1488-1494
[3]   CATALYTIC PROPERTIES OF D-XYLOSE ISOMERASE FROM STREPTOMYCES-VIOLACEORUBER [J].
CALLENS, M ;
KERSTERSHILDERSON, H ;
VANOPSTAL, O ;
DEBRUYNE, CK .
ENZYME AND MICROBIAL TECHNOLOGY, 1986, 8 (11) :696-700
[4]   METAL-ION BINDING TO D-XYLOSE ISOMERASE FROM STREPTOMYCES-VIOLACEORUBER [J].
CALLENS, M ;
TOMME, P ;
KERSTERSHILDERSON, H ;
CORNELIS, R ;
VANGRYSPERRE, W ;
DEBRUYNE, CK .
BIOCHEMICAL JOURNAL, 1988, 250 (01) :285-290
[5]   X-RAY-ANALYSIS OF D-XYLOSE ISOMERASE AT 1.9 A - NATIVE ENZYME IN COMPLEX WITH SUBSTRATE AND WITH A MECHANISM-DESIGNED INACTIVATOR [J].
CARRELL, HL ;
GLUSKER, JP ;
BURGER, V ;
MANFRE, F ;
TRITSCH, D ;
BIELLMANN, JF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1989, 86 (12) :4440-4444
[6]   MECHANISM FOR ALDOSE-KETOSE INTERCONVERSION BY D-XYLOSE ISOMERASE INVOLVING RING-OPENING FOLLOWED BY A 1,2-HYDRIDE SHIFT [J].
COLLYER, CA ;
HENRICK, K ;
BLOW, DM .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 212 (01) :211-235
[7]   STUDIES ON D-GLUCOSE-ISOMERIZING ENZYME FROM BACILLUS-COAGULANS, STRAIN HN-68 .6. ROLE OF METAL IONS ON ISOMERIZATION OF D-GLUCOSE AND D-XYLOSE BY ENZYME [J].
DANNO, G .
AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1971, 35 (07) :997-&
[8]  
DAWSON RMC, 1969, DATA BIOCH RES, P481
[9]   CRYSTALLOGRAPHIC STUDIES OF THE MECHANISM OF XYLOSE ISOMERASE [J].
FARBER, GK ;
GLASFELD, A ;
TIRABY, G ;
RINGE, D ;
PETSKO, GA .
BIOCHEMISTRY, 1989, 28 (18) :7289-7297
[10]   STRUCTURES OF D-XYLOSE ISOMERASE FROM ARTHROBACTER STRAIN-B3728 CONTAINING THE INHIBITORS XYLITOL AND D-SORBITOL AT 2.5-A AND 2.3-A RESOLUTION, RESPECTIVELY [J].
HENRICK, K ;
COLLYER, CA ;
BLOW, DM .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 208 (01) :129-157