The peptide resonances of the 1H and 15N nuclear magnetic resonance spectra of ferrocytochrome c2 from Rhodobacter capsulatus are sequentially assigned by a combination of 2D 1H-1H and 1H-15N spectroscopy, the latter performed on 15N-enriched protein. Short-range nuclear Overhauser effect (NOE) data show α-helices from residues 3-17, 55-65, 69-88, and 103-115. Within the latter two α-helices, there are three single 310 turns, 70-72, 76-78, and 107-109. In addition αH-NH,+1 and αH-NH,+2 NOEs indicate that the N-terminal helix (3-17) is distorted. Compared to horse or tuna cytochrome c and cytochrome c2 of Rhodospirillium rubrum, there is a 6-residue insertion at residues 23-29 in R. capsulatus cytochrome c2. The NOE data show that this insertion forms a loop, probably an Ω loop. 1H-15N heteronuclear multiple quantum correlation experiments are used to follow NH exchange over a period of 40 h. As the 2D spectra are acquired in short time periods (30 min), rates for intermediate exchanging protons can be measured. Comparison of the NH exchange data for the N-terminal helix of cytochrome c2 of R. capsulatus with the highly homologous horse heart cytochrome c [Wand, A. J., Roder, H., & Englander, S. W. (1986) Biochemistry 25, 1107-1114] shows that this helix is less stable in cytochrome c2. © 1990, American Chemical Society. All rights reserved.