REVERSIBILITY OF 2D CELLULAR AUTOMATA IS UNDECIDABLE

被引:122
作者
KARI, J
机构
[1] Mathematics Department, University of Turku
来源
PHYSICA D | 1990年 / 45卷 / 1-3期
关键词
D O I
10.1016/0167-2789(90)90195-U
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem whether a given two- or higher-dimensional cellular automaton is reversible is shown to be algorithmically undecidable. A cellular automaton is called reversible if it has an inverse automaton, that is a cellular automaton that makes the system retrace its steps backwards in time. The same problem is known to be decidable for one-dimensional automata. © 1990.
引用
收藏
页码:379 / 385
页数:7
相关论文
共 11 条
[1]  
Amoroso S., 1972, Journal of Computer and System Sciences, V6, P448, DOI 10.1016/S0022-0000(72)80013-8
[2]  
Berger R., 1966, MEM AM MATH SOC, V66
[3]  
Culik K. II, 1987, Complex Systems, V1, P1035
[4]  
KARI J, 1989, THESIS U TURKU FINLA
[5]  
KARI J, UNPUB COMPUTER SYSTE
[6]  
Moore E. F., 1962, P S APPL MATH, V14, P17, DOI DOI 10.1090/PSAPM/014/9961
[7]  
Myhill J., 1963, P AM MATH SOC, V14, P685, DOI DOI 10.2307/2034301.
[8]  
Richardson D., 1972, Journal of Computer and System Sciences, V6, P373, DOI 10.1016/S0022-0000(72)80009-6
[9]   UNDECIDABILITY AND NONPERIODICITY FOR TILINGS OF PLANE [J].
ROBINSON, RM .
INVENTIONES MATHEMATICAE, 1971, 12 (03) :177-&
[10]  
Toffoli T., 1987, CELLULAR AUTOMATA MA, DOI DOI 10.7551/MITPRESS/1763.001.0001