DENSITY-ESTIMATION BY KERNEL AND WAVELETS METHODS - OPTIMALITY OF BESOV-SPACES

被引:63
作者
KERKYACHARIAN, G
PICARD, D
机构
[1] UNIV AMIENS,AMIENS,FRANCE
[2] UNIV PARIS 07,UFR MATH,F-75251 PARIS 05,FRANCE
关键词
DENSITY ESTIMATION; MINIMAX; KERNELS; WAVELETS; BESOV SPACES;
D O I
10.1016/0167-7152(93)90024-D
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is showing that the saturation space of the minimax rate associated to a L(p) loss and linear estimators is the Besov space B(p)sinfinity. More precisely, it is shown that if a function space included in L(p) is such that its minimax rate is the usual one s/(1 + 2s) and if this rate is attained by a sequence of linear estimators, then this space is included in a ball of the space B(p)sinfinity. This implies, for example, that the minimax rates that have been estimated for the Sobolev balls are in fact only a consequence of their inclusions in such Besov balls
引用
收藏
页码:327 / 336
页数:10
相关论文
共 17 条
[1]  
ASSOUAD P, 1983, NOTE CRAS SER 1, V1021
[2]  
Bergh J., 1976, INTERPOLATION SPACES, V223
[3]   APPROXIMATION IN METRIC-SPACES AND ESTIMATION THEORY [J].
BIRGE, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 65 (02) :181-237
[4]   ON ESTIMATING A DENSITY USING HELLINGER DISTANCE AND SOME OTHER STRANGE FACTS [J].
BIRGE, L .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 71 (02) :271-291
[5]  
BRETAGNOLLE J, 1976, Z WAHRSCH VERW GEBIE, V47, P119
[6]  
CATALOT VG, 1992, SCAND J STAT, V19, P317
[7]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[8]  
DENOHO D, 1991, 402 STANF U TECH REP
[9]  
DONOHO D, 1993, 419 STANF U TECH REP
[10]  
DONOHO DL, 1993, IN PRESS BIOMETRIKA