EIGENVECTORS OF 2 PARTICLES RELATIVE POSITION AND TOTAL MOMENTUM

被引:475
作者
FAN, HY
KLAUDER, JR
机构
[1] CHINESE UNIV SCI & TECHNOL, DEPT MAT SCI & ENGN, HEFEI 230026, PEOPLES R CHINA
[2] UNIV FLORIDA, DEPT PHYS & MATH, GAINESVILLE, FL 32611 USA
来源
PHYSICAL REVIEW A | 1994年 / 49卷 / 02期
关键词
D O I
10.1103/PhysRevA.49.704
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We give the explicit form of the common eigenvectors of the relative position Q(1)-Q(2) and the total momentum P-1+P-2, Of two particles which were considered by Einstein, Podolsky, and Rosen [Phys. Rev. 47, 777 (1935)] in their argument that the quantum-mechanical state vector is not complete. Orthonormality and completeness of such eigenvectors, as well as their use in constructing the unitary operator for simultaneously squeezing Q(1)-Q(2) and P-1 + P-2, are derived by using the technique of integration within an ordered product of operators.
引用
收藏
页码:704 / 707
页数:4
相关论文
共 10 条
[1]   EXPERIMENTAL TESTS OF REALISTIC LOCAL THEORIES VIA BELLS THEOREM [J].
ASPECT, A ;
GRANGIER, P ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1981, 47 (07) :460-463
[2]   EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS [J].
ASPECT, A ;
DALIBARD, J ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (25) :1804-1807
[3]  
Bell J.S., 1964, PHYSICS, V1, P195, DOI [10.1103/PhysicsPhysiqueFizika.1.195, 10.1103/Physics-PhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[4]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[5]  
Erdelyi A, 1953, HIGHER TRANSCENDENTA
[6]  
FAN HY, 1987, PHYS REV D, V35, P1831, DOI 10.1103/PhysRevD.35.1831
[7]  
FAN HY, 1988, J PHYS A-MATH GEN, V21, pL725, DOI 10.1088/0305-4470/21/14/003
[8]   EXPERIMENTAL TEST OF LOCAL HIDDEN-VARIABLE THEORIES [J].
FREEDMAN, SJ ;
CLAUSER, JF .
PHYSICAL REVIEW LETTERS, 1972, 28 (14) :938-&
[9]   MAPPING OF CLASSICAL CANONICAL-TRANSFORMATIONS TO QUANTUM UNITARY OPERATORS [J].
HONGYI, F ;
VANDERLINDE, J .
PHYSICAL REVIEW A, 1989, 39 (06) :2987-2993
[10]  
Maslov V. P., 1981, SEMICLASSICAL APPROX