COCOA - A NEW MOUSE MODEL FOR PLATELET STORAGE POOL DEFICIENCY

被引:57
作者
NOVAK, EK
SWEET, HO
PROCHAZKA, M
PARENTIS, M
SOBLE, R
REDDINGTON, M
CAIRO, A
SWANK, RT
机构
[1] NEW YORK STATE DEPT HLTH, ROSWELL PK MEM INST, DEPT MED & CHIRURG 2, 666 ELM ST, BUFFALO, NY 14263 USA
[2] JACKSON LAB, BAR HARBOR, ME 04609 USA
关键词
D O I
10.1111/j.1365-2141.1988.tb02376.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
We describe genetic, haematological and biochemical properties of a new mouse pigment mutant, cocoa (coa). Cocoa is a recessive mutation located on the centromeric end of chromosome 3 near the Car-2 locus. The mutation causes increased bleeding time accompanied by symptoms of platelet storage pool deficiency (SPD), including decreased platelet serotonin and decreased visibility of dense granules as analysed by electron microscopy of unfixed platelets. Dense granules were visible in normal numbers when platelets were incubated with the fluorescent dye, mepacrine. The intragranular environment, however, was abnormal as indicated by decreased flashing of mepacrine-loaded dense granules after exposure to ultraviolet light. Unlike the previously described seven mouse pigment mutations with SPD in which pigment granules, platelet dense granules and lysosomes are affected, the cocoa mutant had normal secretion of lysosomal enzymes from kidney proximal tubule cells and platelets. The cocoa mutation thus represents an example of a single gene which simultaneously affects melanosomes and platelet dense granules but probably does not affect lysosomes. The results indicate that melanosomes and platelet dense granules share steps in synthesis and/or processing. Cocoa may be a model for cases of human Hermansky-Pudlak syndrome in which functions of melanosomes and platelet dense granules, but not lysosomes, are involved.
引用
收藏
页码:371 / 378
页数:8
相关论文
共 34 条
[1]  
BARAK Y, 1987, AM J PEDIAT HEMATOL, V9, P42
[2]  
Brandt E. J., 1981, Immunological defects in laboratory animals 1., P99
[3]  
BRANDT EJ, 1975, J CELL BIOL, V67, P744
[4]   MORPHOLOGY AND ENUMERATION OF HUMAN BLOOD PLATELETS [J].
BRECHER, G ;
CRONKITE, EP .
JOURNAL OF APPLIED PHYSIOLOGY, 1950, 3 (06) :365-377
[5]   EASY METHOD TO DETERMINE SEROTONIN CONTENT OF HUMAN PLATELETS [J].
CROSTI, PF ;
LUCCHELLI, PE .
JOURNAL OF CLINICAL PATHOLOGY, 1962, 15 (02) :191-&
[6]  
DAY HJ, 1986, SEMIN HEMATOL, V23, P89
[7]   PLATELET ADENINE-NUCLEOTIDE STORAGE POOL DEFICIENCY IN THROMBOCYTOPENIC ABSENT RADII SYNDROME [J].
DAY, HJ ;
HOLMSEN, H .
JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1972, 221 (09) :1053-&
[8]   BLEEDING-TIME IN LABORATORY-ANIMALS .2. COMPARISON OF DIFFERENT ASSAY CONDITIONS IN RATS [J].
DEJANA, E ;
CALLIONI, A ;
QUINTANA, A ;
DEGAETANO, G .
THROMBOSIS RESEARCH, 1979, 15 (1-2) :191-197
[9]   THE HERMANSKY-PUDLAK SYNDROME - REPORT OF 3 CASES AND REVIEW OF PATHO-PHYSIOLOGY AND MANAGEMENT CONSIDERATIONS [J].
DEPINHO, RA ;
KAPLAN, KL .
MEDICINE, 1985, 64 (03) :192-202
[10]   EVOLUTION OF MAMMALIAN CARBONIC-ANHYDRASE LOCI BY TANDEM DUPLICATION - CLOSE LINKAGE OF CAR-1 AND CAR-2 TO CENTROMERE REGION OF CHROMOSOME-3 OF MOUSE [J].
EICHER, EM ;
STERN, RH ;
WOMACK, JE ;
DAVISSON, MT ;
RODERICK, TH ;
REYNOLDS, SC .
BIOCHEMICAL GENETICS, 1976, 14 (7-8) :651-660