A STUDY OF THE POWER LAW RESISTANCE IN A FIBONACCI LATTICE

被引:12
作者
GODA, M [1 ]
KUBO, H [1 ]
机构
[1] NIIGATA UNIV,GRAD SCH SCI & TECHNOL,NIIGATA 95021,JAPAN
关键词
D O I
10.1143/JPSJ.58.2109
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:2109 / 2118
页数:10
相关论文
共 35 条
[1]   FRACTAL DYNAMICS OF ELECTRON WAVE-PACKETS IN ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS [J].
ABE, S ;
HIRAMOTO, H .
PHYSICAL REVIEW A, 1987, 36 (11) :5349-5352
[2]   SCALING THEORY OF LOCALIZATION - ABSENCE OF QUANTUM DIFFUSION IN 2 DIMENSIONS [J].
ABRAHAMS, E ;
ANDERSON, PW ;
LICCIARDELLO, DC ;
RAMAKRISHNAN, TV .
PHYSICAL REVIEW LETTERS, 1979, 42 (10) :673-676
[3]   NEW METHOD FOR A SCALING THEORY OF LOCALIZATION [J].
ANDERSON, PW ;
THOULESS, DJ ;
ABRAHAMS, E ;
FISHER, DS .
PHYSICAL REVIEW B, 1980, 22 (08) :3519-3526
[4]   RESONANCE TUNNELING AND LOCALIZATION SPECTROSCOPY [J].
AZBEL, MY .
SOLID STATE COMMUNICATIONS, 1983, 45 (07) :527-530
[5]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[6]  
DODERA T, 1988, PHYS REV B, V38, P11534
[7]  
ECONOMOU EN, 1981, PHYS REV LETT, V46, P618, DOI 10.1103/PhysRevLett.46.618
[8]   SPECTRAL PROPERTIES OF ONE-DIMENSIONAL QUASI-CRYSTALLINE AND INCOMMENSURATE SYSTEMS [J].
FUJITA, M ;
MACHIDA, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (04) :1470-1477
[9]   ELECTRONS ON ONE-DIMENSIONAL QUASI-LATTICES [J].
FUJITA, M ;
MACHIDA, K .
SOLID STATE COMMUNICATIONS, 1986, 59 (02) :61-65
[10]  
Gardner M., 1977, SCI AM, V236, P110, DOI DOI 10.1038/SCIENTIFICAMERICAN0177-110