AVERAGE ENTROPY OF A SUBSYSTEM

被引:1311
作者
PAGE, DN
机构
[1] Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton
关键词
D O I
10.1103/PhysRevLett.71.1291
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
If a quantum system of Hilbert space dimension mn is in a random pure state, the average entropy of a subsystem of dimension m less-than-or-equal-to n is conjectured to be S(m, n) = SIGMA(k = n + 1)mn 1/k - m-1/2n and is shown to be congruent-to ln m - m/2n for 1 << m less-than-or-equal-to n. Thus there is less than one-half unit of information, on average, in the smaller subsystem of a total system in a random pure state.
引用
收藏
页码:1291 / 1294
页数:4
相关论文
共 11 条
[1]   ENTROPY INEQUALITIES [J].
ARAKI, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1970, 18 (02) :160-&
[2]   COMPLEXITY AS THERMODYNAMIC DEPTH [J].
LLOYD, S ;
PAGELS, H .
ANNALS OF PHYSICS, 1988, 188 (01) :186-213
[3]  
LLOYD S, COMMUNICATION
[4]   ENTROPY OF AN N-SYSTEM FROM ITS CORRELATION WITH A K-RESERVOIR [J].
LUBKIN, E .
JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) :1028-1031
[5]  
LUBKIN E, 1992, WISCMILW92TH12 U WIS
[6]  
MATHEWS J, 1970, MATH METHODS PHYSICS, P300
[7]  
MIKHLIN SG, 1957, INTEGRAL EQUATIONS T, P296
[8]  
PAGE DN, 1993, IN PRESS 5TH P CAN C
[9]  
PAGE DN, THY2493 U ALB REP
[10]  
Tricomi F.G., 1951, Q J MATH OXF, V2, P199, DOI DOI 10.1093/QMATH/2.1.199