ISOSPECTRAL BENZENOID GRAPHS WITH AN ODD NUMBER OF VERTICES

被引:9
作者
BABIC, D
机构
[1] The Rugjer Bošković Institute, Zagreb, 41001
关键词
D O I
10.1007/BF01164631
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A procedure for construction of isospectral pairs of benzenoid graphs is described. It is based on the Heilbronner ''wrapping'' procedure for construction of isospectral bipartite graphs. Only isospectral pairs having an odd number of vertices could be produced (the smallest among them has 33 vertices and 9 hexagons). Thus, the conjecture announced by Cioslowski is partially disproved.
引用
收藏
页码:137 / 146
页数:10
相关论文
共 11 条
[1]  
BABIC D, UNPUB
[2]   CHEMICAL GRAPHS .5. ENUMERATION AND PROPOSED NOMENCLATURE OF BENZENOID CATA-CONDENSED POLYCYCLIC AROMATIC HYDROCARBONS [J].
BALABAN, AT ;
HARARY, F .
TETRAHEDRON, 1968, 24 (06) :2505-&
[3]  
CIOSLOWSKI J, 1991, J MATH CHEM, V6, P111
[4]  
GRBOVIC V, IN PRESS
[5]  
Gutman I., 1986, MATH CONCEPTS ORGANI, DOI [10.1007/978-3-642-70982-1, DOI 10.1007/978-3-642-70982-1]
[6]  
Gutman I., 1989, INTRO THEORY BENZENO
[7]  
GUTMAN I, COMMUNICATION
[8]  
HEILBRONNER E, 1979, MATCH-COMMUN MATH CO, P105
[9]   ISOSPECTRAL GRAPHS AND MOLECULES [J].
HERNDON, WC ;
ELLZEY, ML .
TETRAHEDRON, 1975, 31 (02) :99-107
[10]  
SMITH FT, 1979, J CHEM PHYS, V34, P105