ASYMPTOTICS FOR THE EUCLIDEAN TSP WITH POWER WEIGHTED EDGES

被引:7
作者
YUKICH, JE [1 ]
机构
[1] CORNELL UNIV,INST MATH SCI,ITHACA,NY 14850
关键词
Mathematics Subject Classification (1990): 60D05; 60F15; 60C05;
D O I
10.1007/BF01213389
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let U-1,..., U-n denote i.i.d. random variables with the uniform distribution on [0, 1](2), and let T-2:= T-2(U-1,...,U-n) denote the shortest tour through UI,...,U, with square-weighted edges. By drawing on the quasi-additive structure of T-2 and the boundary rooted dual process, it is shown that lim(n-->infinity) IET(2)(U-1,..., U-n) = beta for some finite constant beta.
引用
收藏
页码:203 / 220
页数:18
相关论文
共 6 条
[1]  
ALDOUS D, 1992, PROBAB THEORY RELAT, P247
[2]  
Beardwood J, 1959, P CAMBRIDGE PHILOS S, V55, P299, DOI [DOI 10.1017/S0305004100034095, 10.1017/S0305004100034095]
[3]   LIMIT THEOREMS AND RATES OF CONVERGENCE FOR EUCLIDEAN FUNCTIONALS [J].
Redmond, C. ;
Yukch, J. E. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (04) :1057-1073
[4]  
Rhee W.T, 1993, ANN APPL PROBAB, V3, P794
[5]   SUBADDITIVE EUCLIDEAN FUNCTIONALS AND NON-LINEAR GROWTH IN GEOMETRIC PROBABILITY [J].
STEELE, JM .
ANNALS OF PROBABILITY, 1981, 9 (03) :365-376