VARIANCE REDUCTION FOR LATTICE WALKS GROWN WITH MARKOV-CHAIN SAMPLING

被引:9
作者
FRASER, SJ [1 ]
WINNIK, MA [1 ]
机构
[1] UNIV TORONTO,LASH MILLER CHEM LABS,DEPT CHEM,TORONTO M5S 1A1,ONTARIO,CANADA
关键词
D O I
10.1063/1.437173
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A Markov chain procedure for growing self- and neighbor-avoiding walks is described. By making the probabilities of all walks nearly equal, the variance in estimates of walk statistics is greatly reduced. A detailed analysis is given of the important example of next-neighbor-avoiding walks on the tetrahedral lattice: Such walks serve as a model for polymethylene chains. This case demonstrates that, in general, a similar variance reduction can be achieved at finite temperature for walks with conformationally dependent internal energy. The algorithm for constructing the sampling distributions for the steps of these finite temperature walks is summarized. © 1979 American Institute of Physics.
引用
收藏
页码:575 / 580
页数:6
相关论文
共 9 条
[1]  
Feller, 1968, INTRO PROBABILITY TH
[2]  
Flory P.J., 1989, STAT MECH CHAIN MOL
[3]  
Hammersley J., 1975, MONTE CARLO METHODS
[4]  
HAMMERSLEY JM, 1954, J ROY STAT SOC B, V16, P23
[5]  
Kemeny J.G., 1976, FINITE MARKOV CHAINS
[6]  
MARSHALL CW, 1971, APPLIED GRAPH THEORY
[7]   WEIGHTING METHODS FOR MONTE-CARLO CALCULATION OF POLYMER CONFIGURATIONS [J].
MCCRACKIN, FL .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICAL SCIENCES, 1973, B 76 (3-4) :193-200
[8]   MONTE-CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS [J].
ROSENBLUTH, MN ;
ROSENBLUTH, AW .
JOURNAL OF CHEMICAL PHYSICS, 1955, 23 (02) :356-359
[9]  
Wilson R. J., 1972, INTRO GRAPH THEORY