PERTURBATION-THEORY AROUND 2-DIMENSIONAL CRITICAL SYSTEMS THROUGH HOLOMORPHIC DECOMPOSITION

被引:12
作者
CONSTANTINESCU, F [1 ]
FLUME, R [1 ]
机构
[1] UNIV BONN,INST PHYS,W-5300 BONN 1,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 13期
关键词
D O I
10.1088/0305-4470/23/13/033
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors consider perturbations by relevant interactions of two-dimensional conformally invariant rational field theories. The meromorphic structure-with respect to the scaling dimensions of the perturbing interactions-of the correlation functions is made explicit through a successive application of Stoke's theorem. The resulting decomposition of the amplitudes into holomorphic and antiholomorphic factors yields a representation of the meromorphic structure in terms of the basic data of the rational field theory, which are scaling dimensions, operator product coefficients and braid matrices. They exemplify the general deduction by a concrete calculation to the third order in the coupling constant of the perturbing interaction.
引用
收藏
页码:2971 / 2986
页数:16
相关论文
共 20 条
[1]  
[Anonymous], 1986, JETP LETT+
[2]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[3]   SUPERCONFORMAL SYMMETRY IN 2 DIMENSIONS [J].
BERSHADSKY, MA ;
KNIZHNIK, VG ;
TEITELMAN, MG .
PHYSICS LETTERS B, 1985, 151 (01) :31-36
[4]  
CARDY J, 1987, NUCL PHYS B, V285, P687
[5]  
DOTSENKO VIS, 1988, ADV STUD PURE MATH, V16, P17
[6]  
FLUME R, 1988, CONFORMAL INVARIANCE
[7]   CONFORMAL-INVARIANCE, UNITARITY, AND CRITICAL EXPONENTS IN 2 DIMENSIONS [J].
FRIEDAN, D ;
QIU, Z ;
SHENKER, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (18) :1575-1578
[8]  
FROEHLICH J, 1987, IN PRESS NONPERTURBA
[9]  
KASTOR DA, EFJ8831 PREPR
[10]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2