ASYMPTOTIC LEVEL SPACING OF THE LAGUERRE ENSEMBLE - A COULOMB FLUID APPROACH

被引:29
作者
CHEN, Y
MANNING, SM
机构
[1] Dept. of Math., Imperial Coll. of Sci., Technol. and Med., London
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1994年 / 27卷 / 11期
关键词
D O I
10.1088/0305-4470/27/11/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine the asymptotic level spacing distribution for the Laguerre ensemble in a single-scaled interval, (0, s), containing no levels, E(beta) (0, s), via Dyson's Coulomb-fluid approach. For the alpha = 0 unitary Laguerre ensemble, we recover the exact spacing distribution found by both Edelman and Forrester, white for alpha not-equal 0, the leading terms of E2 (0, S), found by Tracy and Widom, are reproduced without the use of the Bessel kernel and the associated Painleve transcendent. In the same approximation, the next leading term, due to a 'finite-temperature' perturbation (beta not-equal 2), is found.
引用
收藏
页码:3615 / 3620
页数:6
相关论文
共 24 条
[1]  
AKHIEZER NI, 1961, THEORY LINEAR OPERAT, V1, P114
[2]   ASYMPTOTICS OF LEVEL-SPACING DISTRIBUTIONS FOR RANDOM MATRICES [J].
BASOR, EL ;
TRACY, CA ;
WIDOM, H .
PHYSICAL REVIEW LETTERS, 1992, 69 (01) :5-8
[3]   EXPONENTIAL ENSEMBLE FOR RANDOM MATRICES [J].
BRONK, BV .
JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) :228-&
[4]   METALLIC AND INSULATING BEHAVIOR IN AN EXACTLY SOLVABLE RANDOM MATRIX MODEL [J].
CHEN, Y ;
ISMAIL, MEH ;
MUTTALIB, KA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (02) :177-190
[5]  
des Cloizeaux J., 1973, Journal of Mathematical Physics, V14, P1648, DOI 10.1063/1.1666239
[6]   CLASS OF MATRIX ENSEMBLES [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (01) :90-&
[7]   FREDHOLM DETERMINANTS AND INVERSE SCATTERING PROBLEMS [J].
DYSON, FJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (02) :171-183
[8]   STATISTICAL THEORY OF ENERGY LEVELS OF COMPLEX SYSTEMS .3. [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (01) :166-&
[9]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[10]  
DYSON FJ, 1962, J MATH PHYS, V3, P157, DOI 10.1063/1.1703774