CONNECTION BETWEEN BLOCK AND CONVOLUTIONAL CODES

被引:113
作者
SOLOMON, G [1 ]
VANTILBORG, HCA [1 ]
机构
[1] EINDHOVEN UNIV TECHNOL,DEPT MATH,EINDHOVEN,NETHERLANDS
关键词
D O I
10.1137/0137027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convolutional codes of any rate and any constraint length give rise to a sequence of quasi-cyclic codes. Conversely, any quasi-cyclic code may be convolutionally encoded. Among the quasi-cyclic codes are the quadratic residue codes, Reed-Solomon codes and optimal BCH codes. The constraint length K for the convolutional encoding of many of these codes (Golay, (48,24) QR, etc. ) turns out to be surprisingly small. Thus using the soft decoding techniques for convolutional decoding provides a new maximum likelihood decoding algorithm for many block codes. Conversely an optimal quasi-cyclic code will yield a convolutional encoding with optimal local properties and therefore with good infinite convolutional coding properties. 6 refs.
引用
收藏
页码:358 / 369
页数:12
相关论文
共 6 条
[1]  
BOOTH RWD, 1975, 11 P INT TEL C SILV
[2]   SOME PROPERTIES OF BINARY CONVOLUTIONAL CODE GENERATORS [J].
BUSSGANG, JJ .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1965, 11 (01) :90-100
[3]   CONVOLUTIONAL CODES .1. ALGEBRAIC STRUCTURE [J].
FORNEY, GD .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (06) :720-+
[4]  
Macwilliams F., 1986, THEORY ERROR CORRECT
[5]   A NEW TREATMENT OF BOSE-CHAUDHURI CODES [J].
MATTSON, HF ;
SOLOMON, G .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1961, 9 (04) :654-669