ERGODICITY OF REVERSIBLE-REACTION DIFFUSION-PROCESSES

被引:14
作者
DING, WD
DURRETT, R
LIGGETT, TM
机构
[1] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024
[2] CORNELL UNIV,DEPT MATH,ITHACA,NY 14853
关键词
D O I
10.1007/BF01377624
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Reaction-diffusion processes were introduced by Nicolis and Prigogine, and Haken. Existence theorems have been established for most models, but not much is known about ergodic properties. In this paper we study a class of models which have a reversible measure. We show that the stationary distribution is unique and is the limit starting from any initial distribution. © 1990 Springer-Verlag.
引用
收藏
页码:13 / 26
页数:14
相关论文
共 34 条
[1]  
[Anonymous], 1985, INTERACTING PARTICLE
[2]   COLLECTIVE PHENOMENA IN INTERACTING PARTICLE-SYSTEMS [J].
BOLDRIGHINI, C ;
DEMASI, A ;
PELLEGRINOTTI, A ;
PRESUTTI, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 25 (01) :137-152
[3]  
BOLDRIGHINI C, 1989, NONEQUILIBRIUM FLUCT
[4]  
CHEN MF, 1987, SCI CHINA SER A, V30, P148
[5]  
CHEN MF, 1986, JUMP PROCESSES PARTI
[6]  
CHEN MF, 1985, ACTA MATH SINICA, V1, P261
[7]  
CHEN MF, 1989, ACTA MATH SCI, V9, P9
[8]   RENORMALIZATION GROUP APPROACH TO CHEMICAL INSTABILITIES [J].
DEWEL, G ;
WALGRAEF, D ;
BORCKMANS, P .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1977, 28 (03) :235-237
[9]   NON-EQUILIBRIUM PHASE-TRANSITIONS AND CHEMICAL INSTABILITIES [J].
DEWEL, G ;
BORCKMANS, P ;
WALGRAEF, D .
JOURNAL OF STATISTICAL PHYSICS, 1981, 24 (01) :119-137
[10]  
DING WD, 1987, ERGODIC THEOREMS LIN