AN ALGORITHM FOR THE N-LYAPUNOV EXPONENTS OF AN N-DIMENSIONAL UNKNOWN DYNAMIC SYSTEM

被引:115
作者
GENCAY, R [1 ]
DECHERT, WD [1 ]
机构
[1] UNIV HOUSTON,DEPT ECON,HOUSTON,TX 77204
来源
PHYSICA D | 1992年 / 59卷 / 1-3期
关键词
D O I
10.1016/0167-2789(92)90210-E
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An algorithm for estimating Lyapunov exponents of an unknown dynamical system is designed. The algorithm estimates not only the largest but all Lyapunov exponents of the unknown system. The estimation is carried out by a multivariate feedforward network estimation technique. We focus our attention on deterministic as well as noisy system estimation. The performance of the algorithm is very satisfactory in the presence of noise as well as with limited number of observations.
引用
收藏
页码:142 / 157
页数:16
相关论文
共 17 条
[1]  
ABARBANEL HDI, 1991, LYAPUNOV EXPONENTS C
[2]   COMPUTING THE LYAPUNOV SPECTRUM OF A DYNAMIC SYSTEM FROM AN OBSERVED TIME-SERIES [J].
BROWN, R ;
BRYANT, P ;
ABARBANEL, HDI .
PHYSICAL REVIEW A, 1991, 43 (06) :2787-2806
[3]  
Dechert W. D., 1990, ESTIMATING LYAPUNOV
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   CONVERGENCE-RATES AND DATA REQUIREMENTS FOR JACOBIAN-BASED ESTIMATES OF LYAPUNOV EXPONENTS FROM DATA [J].
ELLNER, S ;
GALLANT, AR ;
MCCAFFREY, D ;
NYCHKA, D .
PHYSICS LETTERS A, 1991, 153 (6-7) :357-363
[6]   ON LEARNING THE DERIVATIVES OF AN UNKNOWN MAPPING WITH MULTILAYER FEEDFORWARD NETWORKS [J].
GALLANT, AR ;
WHITE, H .
NEURAL NETWORKS, 1992, 5 (01) :129-138
[7]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[8]   AN ATTRACTOR IN A SOLAR TIME-SERIES [J].
KURTHS, J ;
HERZEL, H .
PHYSICA D, 1987, 25 (1-3) :165-172
[9]  
MCCAFFREY D, 1990, 1977R SERIES
[10]  
Oseledets V. I., 1968, T MOSK MAT OBSHCHEST, V19, P179