INDECOMPOSABLE REGULAR GRAPHS AND HYPERGRAPHS

被引:3
作者
FUREDI, Z
机构
[1] Mathematical Institute, the Hungarian Academy of Sciences, 1364 Budapest
关键词
D O I
10.1016/0012-365X(92)90590-C
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a d-regular simple graph with n vertices. Here it is proved that for d > square-root n - 1, G contains a proper regular spanning subhypergraph. The same statement is proved for multigraphs with d > (n - 1)/3. These bounds are best possible if d is odd. The main tool of the proof is a consequence of Tutte's f-factor theorem on the existence of 2-factors, due to Taskinov. Finally, disproving a conjecture of Alon and Berman, an indecomposable d-regular 3-uniform hypergraph is constructed with d greater-than-or-equal-to 2(n-6)/2.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 11 条
[1]   REGULAR HYPERGRAPHS, GORDON LEMMA, STEINITZ LEMMA AND INVARIANT-THEORY [J].
ALON, N ;
BERMAN, KA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 43 (01) :91-97
[2]  
Berge C., 1973, GRAPHS HYPERGRAPHS
[3]  
Chung Fan R. K., 1988, SIAM J DISCR MATH, V1, P45
[4]  
ENGEL K, 1984, ARS COMBINATORIA, V17, P33
[5]  
GRAVER JE, 1976, INFINITE FINITE SETS, V10, P731
[6]  
GRONAU HDO, 1985, ANN DISCRETE MATH, V26, P209
[7]  
GRONAU HDO, COMMUNICATION
[8]  
Lovasz L, 1986, ANN DISCRETE MATH
[9]   PETERSEN,JULIUS THEORY OF REGULAR GRAPHS [J].
MULDER, HM .
DISCRETE MATHEMATICS, 1992, 100 (1-3) :157-175
[10]  
Petersen J., 1891, ACTA MATH-DJURSHOLM, V15, P193, DOI DOI 10.1007/BF02392606