SOME CONTRIBUTIONS TO ASYMPTOTIC THEORY OF BAYES SOLUTIONS

被引:51
作者
BICKEL, PJ
YAHAV, JA
机构
[1] Dept. of Statistics, University of California, Berkeley, 94720, Calif.
[2] Dept. of Mathem. Statistics, University of Tel Aviv, Tel Aviv
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 11卷 / 04期
关键词
D O I
10.1007/BF00531650
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper deals with the asymptotic theory of Bayes solutions in (i) Estimation (ii) Testing when hypothesis and alternative are separated at least by an indifference region, under the assumption that the observations are independent and indentically distributed. The estimation results which are partial generalizations of results of LeCam begin with a proof of the convergence of the normalized posterior density to the appropriate normal density in a strong sense. From this result we derive the asymptotic efficiency of Bayes estimates obtained from smooth loss functions and in particular of the posterior mean. The last two theorems of this section deal with asymptotic expansions for the posterior risk in such estimation problems. The section on testing contains a limit theorem for the n-th root of the posterior risk under weak conditions on the prior and the loss function. Finally we discuss generalizations and some open problems. © 1969 Springer-Verlag.
引用
收藏
页码:257 / &
相关论文
共 22 条
[1]   ASYMPTOTICALLY OPTIMAL BAYES AND MINIMAX PROCEDURES IN SEQUENTIAL ESTIMATION [J].
BICKEL, PJ ;
YAHAV, JA .
ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02) :442-&
[2]  
DAVIS RC, 1951, ANN MATH STAT, V22, P484
[3]  
DUNFORD N, 1957, LINEAR OPERATORS 1
[4]  
Jeffreys H., 1961, THEORY PROBABILITY, V3rd
[5]   CONSISTENCY OF THE MAXIMUM-LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS [J].
KIEFER, J ;
WOLFOWITZ, J .
ANNALS OF MATHEMATICAL STATISTICS, 1956, 27 (04) :887-906
[6]   ASYMPTOTICALLY OPTIMUM SEQUENTIAL INFERENCE AND DESIGN [J].
KIEFER, J ;
SACKS, J .
ANNALS OF MATHEMATICAL STATISTICS, 1963, 34 (03) :705-&
[7]  
LE CAM L., 1953, U CALIFORNIA PUBLICA, V1, P277
[8]  
Rubin H., 1965, SANKHYA A, V27, P325
[9]  
Schwartz L., 1965, Z WAHRSCH VERW GEBIE, V4, P10, DOI DOI 10.1007/BF00535479
[10]   NOTE ON THE CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATE [J].
WALD, A .
ANNALS OF MATHEMATICAL STATISTICS, 1949, 20 (04) :595-601