DIFFUSION-LIMITED AGGREGATION WITH SURFACE-TENSION - SCALING OF VISCOUS FINGERING

被引:20
作者
FERNANDEZ, JF
ALBARRAN, JM
机构
[1] Centro de Física, Instituto Venezolano de Investigaciones Científicas
关键词
D O I
10.1103/PhysRevLett.64.2133
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Viscous fingers have been generated on square lattices of L×L sites using the diffusion-limited aggregation model plus a simple rule that we propose to take into account surface tension. The wi dths of the generated viscous fingers, as well as mass (m) of the dislodged fluid, depend properly on the capillary number (Ca): They fulfill the hydrodynamic scaling relations Ca-1/2f(Ca1/2L) and m=Ca-1g(Ca1/2L). In addition, mCa-[(d-D)/2]LD in the physically interesting regime (a is the lattice constant, d=2, and D1.6 in our simulations). © 1990 The American Physical Society.
引用
收藏
页码:2133 / 2136
页数:4
相关论文
共 35 条
[1]   SELF-SIMILARITY OF DIFFUSION-LIMITED AGGREGATES AND ELECTRODEPOSITION CLUSTERS - REPLY [J].
ARGOUL, F ;
ARNEODO, A ;
GRASSEAU, G ;
SWINNEY, HL .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1323-1323
[2]   SELF-SIMILARITY OF DIFFUSION-LIMITED AGGREGATES AND ELECTRODEPOSITION CLUSTERS [J].
ARGOUL, F ;
ARNEODO, A ;
GRASSEAU, G .
PHYSICAL REVIEW LETTERS, 1988, 61 (22) :2558-2561
[3]   UNCOVERING THE ANALYTICAL SAFFMAN-TAYLOR FINGER IN UNSTABLE VISCOUS FINGERING AND DIFFUSION-LIMITED AGGREGATION [J].
ARNEODO, A ;
COUDER, Y ;
GRASSEAU, G ;
HAKIM, V ;
RABAUD, M .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :984-987
[4]  
Ball R. C., 1986, On Growth and Form - Fractal and Non-Fractal Patterns in Physics. Proceedings of the NATO Advanced Study Institute, P69
[5]   VISCOUS FLOWS IN 2 DIMENSIONS [J].
BENSIMON, D ;
KADANOFF, LP ;
LIANG, SD ;
SHRAIMAN, BI ;
TANG, C .
REVIEWS OF MODERN PHYSICS, 1986, 58 (04) :977-999
[6]   BREAKDOWN OF MULTIFRACTAL BEHAVIOR IN DIFFUSION-LIMITED AGGREGATES [J].
BLUMENFELD, R ;
AHARONY, A .
PHYSICAL REVIEW LETTERS, 1989, 62 (25) :2977-2980
[7]  
CHOUKE RL, 1959, T AIME, V216, P188
[8]  
DICKEY PA, 1950, SECONDARY RECOVERY O, P444
[9]  
FEDER J, 1986, GROWTH FORM, P56
[10]  
Feder J., 1988, FRACTALS