EXPLICIT CONSTRUCTION OF THE RENORMALIZATION GROUP TRANSFORMATIONS IN PHI-4 FIELD-THEORY

被引:2
作者
BERGERE, MC
BERVILLIER, C
机构
[1] Physique Théorique CNRS, Cen-Saclay, B. P. No 2
关键词
D O I
10.1016/0003-4916(79)90102-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The counterterms of a φ{symbol}4 quantum field theory are decomposed into contributions corresponding to forests of divergent generalized vertices. A partial summation of the perturbation series may be performed according to the forests. An intrinsic representation of the elements of the renormalization group is obtained under the form of the exponential of a differential operator. If we solve the corresponding differential equation, we obtain an integral representation for the multiplicative renormalization. The knowledge of such a summation process is useful to the study of any asymptotic behaviour (Regge behaviour, infrared behaviour...) in a strictly renormalizable field theory. © 1979.
引用
收藏
页码:390 / 414
页数:25
相关论文
共 14 条
[1]  
ASTAUD M, 1967, CR ACAD SCI B PHYS, V264, P1433
[2]   EXTENSION OF RENORMALIZATION GROUP [J].
ASTAUD, M ;
JOUVET, B .
NUOVO CIMENTO A, 1968, 53 (04) :841-+
[3]   ZERO-MASS LIMIT IN PERTURBATIVE QUANTUM FIELD-THEORY [J].
BERGERE, MC ;
LAM, YMP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 48 (03) :267-290
[4]  
BERGERE MC, IN PRESS
[5]  
BERGERE MC, 1974, ASYMPTOTIC BEHAVIO 2
[6]  
Bogoliubov NN., 1959, INTRO THEORY QUANTIZ
[7]   BROKEN SCALE INVARIANCE IN SCALAR FIELD THEORY [J].
CALLAN, CG .
PHYSICAL REVIEW D, 1970, 2 (08) :1541-&
[8]  
CREWTHER RJ, 1975, ASYMPTOTIC BEHAVIOUR, P8
[9]  
CREWTHER RJ, 1976, TH2119CERN
[10]   QUANTUM ELECTRODYNAMICS AT SMALL DISTANCES [J].
GELLMANN, M ;
LOW, FE .
PHYSICAL REVIEW, 1954, 95 (05) :1300-1312